
 Space Breakdown Method
 A new approach for density-based clustering

Eugen-Richard Ardelean

Computer Science

Technical University of Cluj-Napoca

Cluj-Napoca, Romania

ardeleaneugenrichard@gmail.com

Rodica Potolea

Computer Science

Technical University of Cluj-Napoca

Cluj-Napoca, Romania

Rodica.Potolea@cs.utcluj.ro

Alexander Stanciu

Computer Science

Technical University of Cluj-Napoca

Cluj-Napoca, Romania

alexander.stanciu96@gmail.com

Camelia Lemnaru

Computer Science

Technical University of Cluj-Napoca

Cluj-Napoca, Romania

Camelia.Lemnaru@cs.utcluj.ro

Mihaela Dinsoreanu

Computer Science

Technical University of Cluj-Napoca

Cluj-Napoca, Romania

Mihaela.Dinsoreanu@cs.utcluj.ro

Vasile Vlad Moca

Experimental and Theoretical

Neuroscience Lab

Transylvanian Institute of

Neuroscience

Cluj-Napoca, Romania

moca@coneural.org

Abstract— Overlapping clusters and different density clusters
are recurrent phenomena of neuronal datasets, because of how
neurons fire. We propose a clustering method that is able to
identify clusters of arbitrary shapes, having different densities,
and potentially overlapped. The Space Breakdown Method (SBM)
divides the space into chunks of equal sizes. Based on the number
of points inside the chunk, cluster centers are found and expanded.
Even if we consider the particularities of neuronal data in
designing the algorithm – not all data points need to be clustered,
and the data space has a relatively low dimensionality – it can be
applied successfully to other domains involving overlapping and
different density clusters as well. The experiments performed on
benchmark synthetic data show that the proposed approach has
similar or better results than two well-known clustering
algorithms.

Keywords—clustering; density; grid; spike sorting; machine
learning; overlapping clusters; different density;

I.INTRODUCTION

Depending on their role, neurons in the brain fire at different

rates: some neurons are excitatory and have a higher rate of

firing, while others are inhibitory and fire less often [1]. Most

methods for recording brain data capture the signals generated

by a population of neurons, for example the extracellular

microelectrodes technique; however, most often, the analyses

performed subsequently generally need individual neuron data.

Spike sorting addresses the problem of clustering the spikes

recorded by an extra-cellular method according to the neuron

that fired them.

There are several elements which make this problem

extremely challenging: electrode drift, neurons have different

shaped spikes when firing in quick succession as opposed to

isolated discharges, or spikes of different neurons can have

similar features because of their relative position to the

measuring electrode. Another potential challenge is the large

volume of spike data. We assume the spikes are detected

correctly and the right features are recorded [2]. The problem

formulation, together with the additional challenges, can be

translated into an imbalanced clustering problem. Because of

this, an efficient solution to this problem should be generally

applicable to any other imbalanced clustering problem, not only

to spike sorting.

Our aim is to be able to identify the correct number of

neurons recorded and assign the spikes to the neuron that

produced them. But due to the noisy nature of the data, it is

acceptable to define more clusters than the actual number of

neurons and to merge them in a post-processing step. Noise

should not be classified at all.

Through this approach we have tried to identify the number

of clusters and their general shape when dealing with large

datasets of points which correspond to different density clusters

with a gaussian distribution that can overlap.

The rest of the paper is organized as follows: section II

discusses several algorithms for clustering, some of which are

used for comparison with our SBM. Section III focuses on the

description of the problems that we are dealing with and

provides details of the approach. In section IV, the evaluation

methods and the analysis of the results both quantitatively and

qualitatively are presented. Section V consists of a discussion

419978-1-7281-4914-1/19/$31.00 © 2019 IEEE

Authorized licensed use limited to: Auckland University of Technology. Downloaded on June 06,2020 at 16:39:12 UTC from IEEE Xplore. Restrictions apply.

of the limits of the presented approach and the conclusions we

have reached.

II.RELATED WORK
Two of the most used algorithms in clustering in general,

but also for spike sorting in particular are DBSCAN [3] and K-

Means [4].

K-Means [4] partitions the dataset into k clusters in which

each point is claimed by the cluster with the nearest mean. One

of the biggest disadvantages of the algorithm is that it is hard to

estimate the number of clusters in advance. Another problem is

that since it is centroid based, it has trouble identifying clusters

of arbitrary shape.

DBSCAN [3] is a density-based approach that considers

points residing in high density regions as belonging to the same

clusters and marks low-density points as noise. DBSCAN does

not require the number of clusters as input and is able to find

clusters of arbitrary shapes, but it struggles with datasets that

have clusters of different densities.

OPTICS [5] is another density-based approach, which aims

to address the weakness of DBSCAN for imbalanced clusters.

Just like DBSCAN, it does not require the number of clusters.

One of the advantages is that OPTICS is not as parameter

dependent as DBSCAN, it requires very little tuning. Another

advantage is that it can find clusters with different densities.

PNAS [6] is an approach that engages in space evaluation

by assessing the contribution of each dimension in the

clustering. The algorithm deals with overlapping clusters in the

preprocessing step by keeping only the cluster cores. It uses a

multi-pass clustering method to deal with imbalanced clusters.

And by evaluating each dimension it can easily deal with high-

dimensional data.

III.THE SPACE BREAKDOWN METHOD
A. Problem characterization

The neuroscience issues described in the introduction boil

down to a set of spikes that should be split into clusters having

different densities and an unknown amount of overlap including

the possibility of one/several to be completely embedded in

other clusters, having different densities. A spike is modeled as

a point in an N dimensional space, where N is the number of

features selected to represent the spike. Our objective is to

develop a clustering method that can handle large amounts of

data points, but is also able to identify the number of different

density clusters and “sort” the points to their respective cluster.

Discovering more clusters than the actual number of neurons is

acceptable as long as the number of misclassified points is kept

to a minimum. A point that was not assigned to a cluster, even

though it could have been part of one, is not considered

misclassified.

Spike sorting datasets in neuroscience can have tens of

thousands of points. They can contain dense clusters of

excitatory neurons which can extend on a larger area and

usually overlap. There are also smaller, less dense clusters of

inhibitory neurons nearby. Because of their sparsity and their

proximity to the denser clusters, it is difficult to distinguish

them from noise. Most traditional clustering algorithms are not

efficient in dealing with different density clusters or with

slightly or totally overlapping clusters.

B. Solution overview
The main phases of the processing pipeline are illustrated in

Figure 1. Since the data are points in an N dimensional space,

we propose to start by normalizing the dataset to bring every

point of the dataset in the range [0, PN] on all N dimensions.

The partitioning number (PN) represents the number of chunks

each axis is split in. Each chunk has the length of 1 on each

dimension. In a 2D space the chunks are squares, in a 3D space

they are cubes, etc. An N dimensional density array stores the

number of points from the original dataset belonging to each of

these unit chunks. This array will have PN elements in each

dimension resulting in PNN chunks. On this array, we look for

the possible cluster centroids. We start by finding the elements

that have a larger value than a given threshold which eliminates

the possibility of noise chunks to be considered as cluster

centroids. Empirical experiments suggest that half of the total

amount of points divided by the number of chunks created,

proved to be an acceptable threshold. Out of the chunks that

passed that threshold, the chunks that are bigger than all their

neighbors, i.e. the local maxima are considered to be the

candidates for the centroids of all the clusters in the dataset.

After finding the centroid candidates, we apply a Breadth-First

Search (BFS) to expand each of these centroids by having an

expansion queue which starts with the centroid and adding valid

neighbors to the queue and the cluster. This results in each

chunk receiving a label, that represents the cluster the chunk

belongs to. These labels are gathered in a label array having the

same size as the density array. The last step is to assign to each

point in the dataset the label of the chunk it belongs to.

The approach has a time complexity of O(n) for the

normalize, chunkify and dechunkify algorithms and O(PNN) for

the cluster centroid search and expansion algorithms.

C. Detailed algorithm
 The input data is considered to be represented as a matrix,

where the lines represent a point in space and the N columns

(dimensions) represent the coordinates of the point. Two hyper-

parameters have to be set: the partitioning number PN

representing the number of chunks we create on each dimension

and a threshold used to stop noise chunks from creating clusters.

Figure 1 – SBM pipeline

The pseudocode for the proposed Space Breakdown Method

(SBM):

1 SBM(dataset, PN, threshold)
2 X = normalize(dataset, PN)
3 densityArray = chunkify(X, PN)
4 cc = findCentroids(densityArray, threshold)

420

Authorized licensed use limited to: Auckland University of Technology. Downloaded on June 06,2020 at 16:39:12 UTC from IEEE Xplore. Restrictions apply.

5 initialize labelsArray with zeros
6 for indexOfCenter= 0 to len(cc):
7 center = cc[indexOfCenter]
8 if labelsArray[center] == 0
9 labelsArray=expand(densityArray
10 labelsArray,indexOfCenter+1,cc)
11 labels = dechunkify(X, labelsArray, PN)
12 return labels

 At first, we normalize the dataset to make the chunking

process easier, by applying a min-max normalization (1) to

bring all the coordinates in the interval [0-1]:

 (1)

 Then we multiply each point with PN to bring the dataset in

the 0-PN range on each dimension.

The second step represents the core idea of the algorithm,

which is to aggregate the points based on their location thus

reducing the number of elements we work with. It stems from

the objective of working with datasets with large number of

points. We break the N dimensional space down into chunks

that count the number of points located in them, thus making

the number of points less relevant. Working with the generated

chunks reduces significantly the data volume.

As inputs we have the normalized dataset of points X, and
PN. As a result of this step we get a density array, that

represents the chunkified dataset.

1 chunkify(X, PN)
2 initialize densityArray with zeros
3 for point in X:
4 location = floor(point)
5 where location has PN put PN-1
6 densityArray[location]+=1
7 return densityArray

We transform the dataset into an N dimensional density

array with PN elements on each dimension (line 2). Since each

point now has the coordinates between [0-PN], by flooring the

values of the coordinates on each dimension (line 4), we obtain

indexes on all dimensions locating to the unit chunk that the

point belongs to (line 6) the exception being points which have

a value of exactly PN on any dimension which we place in the

PN-1 chunk for that dimension.

The third step is to find the possible cluster centroids. We

need the density array calculated in the previous step and a

chosen threshold as inputs. The result is a list of the cluster

centroids.

1 findCentroids(densityArray,threshold)
2 clusterCentroids = []
3 for location in densityArray
4 if (densityArray[location] >= threshold
5 and isMaxima(densityArray, location))
6 add location to clusterCentroids
7 return clusterCentroids

We iterate through all the PNN elements in the density array

(line 3) and check several conditions. Location represents an

array with N elements containing the coordinates with which

we access a chunk in the densityArray. First, for a chunk to

be considered a centroid candidate, the value of the chunk must

be greater than an input threshold (line 4). This reduces the

possibility of noise chunks to create clusters. Second, the chunk

must be a local maximum (line 5).

 To be a local maximum, all of the neighbours of a chunk

must have a value less than or equal to the chunk. We consider

neighbours all chunks with a location that varies by at most 1

on any axis.

1 isMaxima(densityArray, location):
2 neighbours = getNeighbours(location)
3 for nb in neighbours:
4
if(densityArray[nb]>densityArray[location]):
5 return False
6 return True

 GetNeighbors returns a list of locations of all the

neighbors of the current location while making sure that the

locations exist in the array meaning that on all dimensions, the

values are between [0 - PN).

1 getNeighbours(location):
2 offsets= all N digit combinations of -1,0,1
3 remove the 0 on all dimensions offset
4 neighbours = []
5 for every offset in offsets
6 newLoc = p + offset
7 if newLoc>=0 and newLoc<PN
8 neighbours append newLoc
9 return neighbours

 Once the cluster centroids candidates have been found, the

algorithm goes through each candidate(SBM line 6) and, if the

candidate was not included in another cluster yet(SBM line 8),

it expands the cluster using the BFS approach.

 The parameters for expand are: density array (dnstyA), the

labels array we got so far (lblsA), the label with which we are

marking the current cluster (crntLbl) and the list of the cluster

centers (cc) to solve conflicts. The label of a cluster is the index

of that clusters center in the cc array +1, this implies that the

labels start from 1 and that label 0 represents unclustered. The

output is an updated labels array which contains the expanded

cluster.

 expand(dnstyA,lblsA,crntLbl,cc)
1 startC = cc[crntLbl]
2 init visited, shaped as dnstyA, with false
3 expansionQueue = [startC]
4 lblsA[start] = crntLbl
5 visited[start] = true
6 dropoff = calcDropoff(array,startC)
7 while expansionQueue not empty
8 chunk = expansionQueue.pop()
9 shape = shape of dnstyA
10 nbrs = getNeighbours(chunk, shape)

421

Authorized licensed use limited to: Auckland University of Technology. Downloaded on June 06,2020 at 16:39:12 UTC from IEEE Xplore. Restrictions apply.

11 for nbr in nbrs
12 distance = distance(startC,nbr)
13 minVal = dropoff*sqrt(distance)
14 if not visited[nbr] and \
15 minVal<dnstyA[nbr]<=dnstyA[chunk]
16 visited[nbr] = true
17 if lblsA[nbr] == 0
18 expansionQueue.push(nbr)
19 lblsA[nbr] = crntLbl
20 else //nbr was discovered already
21 expand = solveConflict(
22 dnstyA,lblsA,nbr,crntLbl,cc)
23 if expand == true
24 expansionQueue.push(nbr)
25 return lblsA

expand was developed in an empirical way starting from

the base idea of BFS of expanding to the all the neighbours first.

One of the first things we do is calculate the drop-off of the

cluster which is a number that represents how quickly we

should stop expanding. A high value means that the cluster is

going to be discovered in only a few chunks and the expansion

should stop soon. The distance from the center also plays a role

in the expansion and by multiplying the square root of the

distance with the drop-off value, we obtain a number which can

be used as the minimum required amount of points for a chunk

to be considered part of the cluster.

It is possible that the chunk, to which we want to extend, is

already assigned to a cluster (line 20). If so, we solve the dispute

(line 21) and check if we should continue expanding that way

or stop.

To calculate the drop-off, we need the density array and the

chunk for which we want to calculate the drop-off. Using a

similar function to the Root Mean Square, we get an idea of

how well the chunk fits with its neighbours. If a cluster has the

drop-off of the center high, it means that the variation between

the cluster center and its neighbours is high which means that

the cluster does not extend on a large area.

1 calcDropoff(dnstyA,chunk)
2 dropoffSum = 0
3 nbrs = getNeighbours(chunk,shape of dnstyA)
4 for nbr in nbrs
5 diff = dnstyA[chunk] - dnstyA[nbr]
6 dropoffSum += (diff^2)/dnstyA[chunk]
7 return sqrt(dropoffSum)

We only expand to chunks that have a value less than or

equal to the one of the chunks we expanded from. This is

because we expect the data to have a gaussian distribution

meaning that if we go further away from the center, we cannot

get higher values. MinVal represents the minimum number of

points a chunk must have to not be considered noise. It increases with

the distance from the center because it is important to not consider

noise chunks as part of the cluster. We expect to have less points that

belong to the cluster the further away we go from its center, so they

become more likely to be noise chunks.

Once the conditions for expansion to a chunk were met, we

need to check if the chunk was previously claimed by another

cluster (expand line 17). If there is a conflict (expand line 20),

we solve it by checking which of the two clusters (current

cluster vs old cluster) has a greater pull on the conflict chunk.

 To solve a conflict, we need the density array, labels array,

the location of the conflict chunk, the label with which we were

expanding (crntLbl) and the list of cluster centroids. The

result is an updated labels array and a boolean signifying

whether or not we should keep expanding in that direction.

1 solveConflict(dnstyA,lblsA,loc,crntLbl,cc)
2 crntClstr = cc[crntLbl]
3 oldLbl = lblsA[loc]
4 oldClstr = cc[crntLbl]
5 if loc == oldClstr or
7 dnstyA[loc] == dnstyA[oldClstr]
6 in lblsA replace the oldLbl with crntLbl
7 return false
8 d1 = distance(loc, crntClstr)
9 d2 = distance(loc, oldClstr)
10 drop1 = calcDropoff(dnstyA,crntClstr) * d1
11 drop2 = calcDropoff(dnstyA,oldClstr) * d2
12 str1= dnstyA[crntClstr]/dnstyA[loc] - drop1
13 str2= dnstyA[crntClstr]/dnstyA[loc] - drop1
14 if str1 > str2
15 lblsA[loc] = crntLbl
16 return true
17 else
18 return false

The calculation of the pull of a cluster results from an

empirical formula based on the ratio between the cluster

centroid and the conflict chunk, having a positive effect on the

pull, the distance from the centroid of the cluster to the conflict

point and the drop-off of the centroid, having a negative impact.

There are 3 possible outcomes of the conflict:

● The current cluster has a greater pull in which case we

relabel the chunk and continue expanding (lines 15,16).

● The old cluster has a greater pull (line 18) and we stop

the expansion.

● The old cluster was actually a subsection of the current

cluster which happened to have a cluster centroid

candidate and was expanded first (lines 6,7).

Once all the cluster candidates have been considered for

expansion, the last step is what we call the dechunkification of

the labels array back into the labels of the dataset. We need the

original dataset X, the labels array resulted from the BFS and

the partitioning number PN, to output the final point labels.

1 dechunkify (X, labelsArray, PN)
2 initialize pointLabels with zeros
3 for index from 0 to length(X):
4 point = X[index]
5 location = floor(point)
6 pointLabels[index]=labelsArray[location]
7 return pointLabels

 PointLabels is an array having the length equal to the

number of points in the dataset.

422

Authorized licensed use limited to: Auckland University of Technology. Downloaded on June 06,2020 at 16:39:12 UTC from IEEE Xplore. Restrictions apply.

IV.EMPIRICAL VALIDATION
For validation, we compared DBSCAN and K-Means to our

algorithm on 4 datasets. The datasets have been chosen so that

they have different types of densities and different amounts of

overlapping. The 4 datasets are: S1, S2 and Unbalanced (U)

provided by the University of Eastern Finland [9] and the fourth

one, named Unbalance Overlapping (UO), was generated by us.

The datasets are synthetically generated, have two-

dimensions and have the following characteristics:

● S1 (Appendix, figure 1a) contains 5000 points

distributed (Gaussian distribution) equally in 15

clusters (333 points each)

● S2 (Appendix, figure 1b) contains 5000 points

distributed (Gaussian distribution) equally in 15

clusters (333 points each)

● U (Appendix, figure 1c) contains 6500 points in 8

clusters, the 3 clusters on the right contain 2000 points

each while the other 5 on the left side 100 each

● UO (Appendix Figure 1d) contains 4300 points with the

following distribution:

❖ 500 points with the cluster center at [-2, 0] and a

standard deviation of 0.8 (blue)

❖ 50 points with the cluster center at [-2, 3] and a

standard deviation of 0.3 (cyan)

❖ 1000 points with the cluster center at [3, -2] and a

standard deviation of 1 (magenta)

❖ 1250 points with the cluster center at [5, 6] and a

standard deviation of 1 (yellow)

❖ 250 points with cluster center at [4, -1] and a

standard deviation of 0.1 (red)

❖ 1250 points with cluster center at [1, -2] and a

standard deviation of 0.2 (green)

We are interested in assigning the labeled points to the

correct cluster, even if some points remain unlabeled (i.e points

considered as noise). We compare the three algorithms using

two external indices in two settings:

1) the ALL setting includes all the points for the calculation of

the accuracy, while

2) the NNP setting (No Noise Points) will take into

consideration only those points that have been labeled as

belonging to a cluster (hence are not noise).

Because in the used datasets all the points belong to a

cluster, but SBM does not assign a cluster to all the points, we

need the NNP setting to show the actual accuracy of the points

labeled by SBM.

SBM was designed to perform best for datasets with

overlapping and unbalanced clusters such as the ones in the UO

dataset. Even in the ALL setting, SBM performs better than

other well-known algorithms for these cases (see last column in

tables I and III).

The two metrics considered are the Adjusted Rand Index

(ARI) [7] and the Adjusted Mutual Information (AMI) [8]. The

result of ARI for the ALL and NNP settings can be viewed int

Table I and Table II, while the result for AMI in Table III and

Table IV.

 The ARI uses the Rand Index (RI) metric with a slight

adjustment to deal with chances (3). RI, given by the formula

(2), estimates clustering quality by taking pairs of points,

looking if they are in the same cluster (these are called

agreements) or different clusters (these are called

disagreements) in the predicted (cluster defined) and the true

labels. The formula is the division of the agreements by the sum

of the agreements and disagreements. The resulting value is

adjusted for chance.

 (2)

 (3)

The Mutual Information (MI) of two clusters U and V is

given by the formula (4) (where |X| is the number of points in

the cluster X and N is the number of points in the dataset). The

AMI is an adjustment for chance of the MI (5) (where H(U) is

the entropy associated with U and E is the expected mutual

information between two random clusters).

(4)

 (5)

TABLE I. ADJUSTED RAND INDEX VALUES OBTAINED BY THE 3 CLUSTERING

ALGORITHMS (ALL SETTING)

 S1 S2 U UO

K-Means 99.49% 95.75% 100.00% 66.17%

DBSCAN 96.96% 84.74% 99.99% 56.69%

SBM 66.31% 53.60% 98.17% 84.56%

TABLE II. ADJUSTED RAND INDEX VALUES OBTAINED BY THE 3 CLUSTERING

ALGORITHMS (NNP SETTING)

 S1 S2 U UO

K-Means 99.49% 95.75% 100.00% 66.17%

DBSCAN 99.51% 97.37% 99.99% 57.40%

SBM 100% 96.46% 99.99% 92.57%

TABLE III. ADJUSTED MUTUAL INFORMATION VALUES OBTAINED BY THE 3

CLUSTERING ALGORITHMS (ALL SETTING)

 S1 S2 U UO

K-Means 99.46% 96.36% 100.00% 72.99%

423

Authorized licensed use limited to: Auckland University of Technology. Downloaded on June 06,2020 at 16:39:12 UTC from IEEE Xplore. Restrictions apply.

DBSCAN 96.06% 88.61% 99.81% 63.13%

SBM 83.34% 78.07% 93.29% 79.35%

TABLE IV. ADJUSTED MUTUAL INFORMATION VALUES OBTAINED BY THE 3

CLUSTERING ALGORITHMS (NNP SETTING)

 S1 S2 U UO

K-Means 99.46% 96.36% 100.00% 72.99%

DBSCAN 99.51% 98.03% 99.87% 63.48%

SBM 100% 96.68% 99.75% 91.17%

 The parameters used for DBSCAN are:

● min points = log (dataset size) for all datasets

● eps = 27000, 45000, 18000, 0.5 (S1, S2, U, UO)

 The values used for k in K-Means are: 15 for S1, 15 for S2,

8 for U and 6 for UO.

On UO, we can see that the score of both K-Means and

DBSCAN fall heavily, and we can easily see that they do not

cluster correctly (Appendix, figures 2a and b), while SBM is

able to find all of the clusters, but not all of the points of each

cluster (Appendix, figure 3). We can also observe that SBM

split the original yellow cluster in two, this is not a problem

because a manual reviewer could merge those two clusters

where as he could not split the clusters merged by K-Means

(original blue and cyan are now one green cluster) and

DBSCAN (original green, red and pink are now one red

cluster).

SBM does not perform that well on S1 and S2 and that is

because of what is considered noise. We can also observe that

by removing the points that were classified as noise, K-Means

performs the same since it does not label noise, DBSCAN

performs better and SBM has a massive improvement being

close or even better than K-Means and DBSCAN.

We also tested the duration of the execution for each

algorithm. The implementation of the approach was done using

python (version 3.6) with the following libraries: NumPy

(version 1.16), matplotlib (version 3.1.0), sklearn (version

0.21.2) [10] and pandas (version 0.24).

SBM has a runtime somewhere in between K-Means and

DBSCAN, this can be observed in Table V. We can also

observe that the times across all datasets do not vary as much

as they do for the other 2 algorithms.

 The algorithms were run on a laptop with Intel Core i7

4720HQ at 2.60GHz with 4 cores hyperthreaded, 16GB RAM

at 1600MHz, NVIDIA GeForce GTX 950M with 2048 MB of

VRAM,1 TB HDD with 5400 RPM with the following results

(average over 100 runs):

TABLE V. CLUSTERING EXECUTION TIME

 S1 S2 U UO

K-Means 0.147s 0.208s 0.078s 0.100s

DBSCAN 0.049s 0.062s 0.183s 0.091s

SBM 0.127s 0.136s 0.117s 0.098s

V.DISCUSSION AND CONCLUSIONS

 The algorithm did achieve our goal of handling large

datasets in a reasonable amount of time by running a 80.000

point real life dataset in under 5 seconds, but this came at a cost

in other parts. Due to the space and time complexity of PNN, the

algorithm is very sensitive to the PN parameter and the number

of dimensions of a point. PN even though is much smaller than

the expected number of points in a dataset, if the points have

many dimensions, the algorithm suffers. For example a dataset

with 1.000.000 points and 10 dimensions, even for a partition

number as low as 5, 510 chunks are created and at least

8.000.000 of them are empty. On the other hand, if the number

of dimensions is low and the number of points in the dataset is

much larger than the partitioning number and since PN and N

are fixed, O(PNN) the complexity of the algorithm is O(n)
meaning that adding more points to the dataset will only

increase the time linearly.

 The partitioning number should also be large enough so

that the unit chunks can separate the clusters, but not so large to

make the centroid of a sparse cluster be undetectable. On our

datasets, PN=25 seemed to be the best value.

 In conclusion, SBM has a superior performance to K-

Means and DBSCAN when dealing with embedded clusters of

different densities. It also has similar or better results when the

clusters have the same density and some overlap when we allow

for a certain amount of points to remain un-clustered. Also, if

the number of dimensions is relatively small, the clustering is

performed quite fast, having a complexity of O(n).
 This work was supported by two grants from the Romanian

National Authority for Scientific Research and Innovation,

CNCS-UEFISCDI (Project Numbers PN-III-P4-ID-PCE-2016-

0010 and COFUND-NEURON-NMDAR-PSY) and a grant by

the European Union’s Horizon 2020 Research and Innovation

Programme – grant agreement no. 668863-SyBil-AA.

REFERENCES
[1] G. Buzsaki, “Rhythms of the Brain”, 2009

[2] M. Lewicki, “A review of methods for spike sorting: the detection and
classification of neural action potentials” in Network: Computation in
Neural Systems, 1998

[3] M. Ester, H. P. Kriegel, J. Sander, X. Xu, “A Density-Based Algorithm

for Discovering Clusters in Large Spatial Databases with Noise”, Institute
for Computer Science, University of Munich, 1996

[4] J. MacQueen, “Some methods for classification and analysis of

multivariate observations”, Proceedings of the Fifth Berkeley Symposium

on Mathematical Statistics and Probability, Volume 1: Statistics, 281--
297, University of California Press, Berkeley, Calif., 1967

[5] M. Ankerst, M. M. Breunig, H. P. Kriegel & J. Sander, OPTICS: Ordering
Points to Identify the Clustering Structure. Sigmod Record. 28. 49-60.
10.1145/304182.304187, 1999

[6] A. Friedman, M. D. Keselman, L. G. Gibb & A. M. Graybiel, A multistage
mathematical approach to automated clustering of high-dimensional noisy

data, Proceedings of the National Academy of Sciences of the United
States of America. 112. 10.1073/pnas.1503940112, 2015

424

Authorized licensed use limited to: Auckland University of Technology. Downloaded on June 06,2020 at 16:39:12 UTC from IEEE Xplore. Restrictions apply.

[7] Hubert, L. & Arabie, P. Journal of Classification, 2: 193, 1985
https://doi.org/10.1007/BF01908075

[8] Vinh, Epps, & Bailey, “Information Theoretic Measures for Clusterings
Comparison: Variants, Properties, Normalization and Correction for
Chance”, JMLR, 2010

[9] P. Fränti & S. Sieranoja, K-means properties on six clustering benchmark
datasets, Clustering basic benchmark datasets from the University of

Eastern Finland, Applied Intelligence, 48 (12), 4743-4759, December
2018: https://cs.joensuu.fi/sipu/datasets/

[10] F. Pedregosa, Scikit-learn: Machine Learning in Python, JMLR 12, pp.
2825-2830, 2011

APPENDIX

The following figures depict the datasets used for validation:

Figure 1 – Datasets

Figure 2 – DBSCAN and K-Means on UO

Figure 3 – SBM on UO

425

Authorized licensed use limited to: Auckland University of Technology. Downloaded on June 06,2020 at 16:39:12 UTC from IEEE Xplore. Restrictions apply.

