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Abstract— Overlapping clusters and different density clusters 
are recurrent phenomena of neuronal datasets, because of how 
neurons fire. We propose a clustering method that is able to 
identify clusters of arbitrary shapes, having different densities, 
and potentially overlapped. The Space Breakdown Method (SBM) 
divides the space into chunks of equal sizes. Based on the number 
of points inside the chunk, cluster centers are found and expanded. 
Even if we consider the particularities of neuronal data in 
designing the algorithm – not all data points need to be clustered, 
and the data space has a relatively low dimensionality – it can be 
applied successfully to other domains involving overlapping and 
different density clusters as well. The experiments performed on 
benchmark synthetic data show that the proposed approach has 
similar or better results than two well-known clustering 
algorithms. 

Keywords—clustering; density; grid; spike sorting; machine 
learning; overlapping clusters; different density; 

I.INTRODUCTION  

Depending on their role, neurons in the brain fire at different 

rates: some neurons are excitatory and have a higher rate of 

firing, while others are inhibitory and fire less often [1]. Most 

methods for recording brain data capture the signals generated 

by a population of neurons, for example the extracellular 

microelectrodes technique; however, most often, the analyses 

performed subsequently generally need individual neuron data. 

Spike sorting addresses the problem of clustering the spikes 

recorded by an extra-cellular method according to the neuron 

that fired them. 

There are several elements which make this problem 

extremely challenging: electrode drift, neurons have different 

shaped spikes when firing in quick succession as opposed to 

isolated discharges, or spikes of different neurons can have 

similar features because of their relative position to the 

measuring electrode. Another potential challenge is the large 

volume of spike data. We assume the spikes are detected 

correctly and the right features are recorded [2]. The problem 

formulation, together with the additional challenges, can be 

translated into an imbalanced clustering problem. Because of 

this, an efficient solution to this problem should be generally 

applicable to any other imbalanced clustering problem, not only 

to spike sorting. 

Our aim is to be able to identify the correct number of 

neurons recorded and assign the spikes to the neuron that 

produced them. But due to the noisy nature of the data, it is 

acceptable to define more clusters than the actual number of 

neurons and to merge them in a post-processing step. Noise 

should not be classified at all. 

Through this approach we have tried to identify the number 

of clusters and their general shape when dealing with large 

datasets of points which correspond to different density clusters 

with a gaussian distribution that can overlap. 

The rest of the paper is organized as follows: section II 

discusses several algorithms for clustering, some of which are 

used for comparison with our SBM. Section III focuses on the 

description of the problems that we are dealing with and 

provides details of the approach. In section IV, the evaluation 

methods and the analysis of the results both quantitatively and 

qualitatively are presented. Section V consists of a discussion 
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of the limits of the presented approach and the conclusions we 

have reached. 

II.RELATED WORK 
Two of the most used algorithms in clustering in general, 

but also for spike sorting in particular are DBSCAN [3] and K-

Means [4].  

K-Means [4] partitions the dataset into k clusters in which 

each point is claimed by the cluster with the nearest mean. One 

of the biggest disadvantages of the algorithm is that it is hard to 

estimate the number of clusters in advance. Another problem is 

that since it is centroid based, it has trouble identifying clusters 

of arbitrary shape.  

DBSCAN [3] is a density-based approach that considers 

points residing in high density regions as belonging to the same 

clusters and marks low-density points as noise. DBSCAN does 

not require the number of clusters as input and is able to find 

clusters of arbitrary shapes, but it struggles with datasets that 

have clusters of different densities. 

OPTICS [5] is another density-based approach, which aims 

to address the weakness of DBSCAN for imbalanced clusters. 

Just like DBSCAN, it does not require the number of clusters. 

One of the advantages is that OPTICS is not as parameter 

dependent as DBSCAN, it requires very little tuning. Another 

advantage is that it can find clusters with different densities. 

PNAS [6] is an approach that engages in space evaluation 

by assessing the contribution of each dimension in the 

clustering. The algorithm deals with overlapping clusters in the 

preprocessing step by keeping only the cluster cores. It uses a 

multi-pass clustering method to deal with imbalanced clusters. 

And by evaluating each dimension it can easily deal with high-

dimensional data. 

III.THE SPACE BREAKDOWN METHOD 
A. Problem characterization 

The neuroscience issues described in the introduction boil 

down to a set of spikes that should be split into clusters having 

different densities and an unknown amount of overlap including 

the possibility of one/several to be completely embedded in 

other clusters, having different densities. A spike is modeled as 

a point in an N dimensional space, where N is the number of 

features selected to represent the spike. Our objective is to 

develop a clustering method that can handle large amounts of 

data points, but is also able to identify the number of different 

density clusters and “sort” the points to their respective cluster. 

Discovering more clusters than the actual number of neurons is 

acceptable as long as the number of misclassified points is kept 

to a minimum. A point that was not assigned to a cluster, even 

though it could have been part of one, is not considered 

misclassified.  

Spike sorting datasets in neuroscience can have tens of 

thousands of points. They can contain dense clusters of 

excitatory neurons which can extend on a larger area and 

usually overlap. There are also smaller, less dense clusters of 

inhibitory neurons nearby. Because of their sparsity and their 

proximity to the denser clusters, it is difficult to distinguish 

them from noise. Most traditional clustering algorithms are not 

efficient in dealing with different density clusters or with 

slightly or totally overlapping clusters. 

B. Solution overview  
The main phases of the processing pipeline are illustrated in 

Figure 1. Since the data are points in an N dimensional space, 

we propose to start by normalizing the dataset to bring every 

point of the dataset in the range [0, PN] on all N dimensions. 

The partitioning number (PN) represents the number of chunks 

each axis is split in. Each chunk has the length of 1 on each 

dimension. In a 2D space the chunks are squares, in a 3D space 

they are cubes, etc. An N dimensional density array stores the 

number of points from the original dataset belonging to each of 

these unit chunks. This array will have PN elements in each 

dimension resulting in PNN chunks. On this array, we look for 

the possible cluster centroids. We start by finding the elements 

that have a larger value than a given threshold which eliminates 

the possibility of noise chunks to be considered as cluster 

centroids. Empirical experiments suggest that half of the total 

amount of points divided by the number of chunks created, 

proved to be an acceptable threshold. Out of the chunks that 

passed that threshold, the chunks that are bigger than all their 

neighbors, i.e. the local maxima are considered to be the 

candidates for the centroids of all the clusters in the dataset. 

After finding the centroid candidates, we apply a Breadth-First 

Search (BFS) to expand each of these centroids by having an 

expansion queue which starts with the centroid and adding valid 

neighbors to the queue and the cluster. This results in each 

chunk receiving a label, that represents the cluster the chunk 

belongs to. These labels are gathered in a label array having the 

same size as the density array. The last step is to assign to each 

point in the dataset the label of the chunk it belongs to.  

The approach has a time complexity of O(n) for the 

normalize, chunkify and dechunkify algorithms and O(PNN) for 

the cluster centroid search and expansion algorithms.  

C. Detailed algorithm 
 The input data is considered to be represented as a matrix, 

where the lines represent a point in space and the N columns 

(dimensions) represent the coordinates of the point. Two hyper-

parameters have to be set: the partitioning number PN 

representing the number of chunks we create on each dimension 

and a threshold used to stop noise chunks from creating clusters. 

 

Figure 1 – SBM pipeline 

The pseudocode for the proposed Space Breakdown Method 

(SBM): 

1 SBM(dataset, PN, threshold) 
2  X = normalize(dataset, PN) 
3  densityArray = chunkify(X, PN) 
4  cc = findCentroids(densityArray, threshold) 
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5  initialize labelsArray with zeros 
6  for indexOfCenter= 0 to len(cc): 
7    center = cc[indexOfCenter] 
8    if labelsArray[center] == 0 
9     labelsArray=expand(densityArray   
10             labelsArray,indexOfCenter+1,cc) 
11  labels = dechunkify(X, labelsArray, PN) 
12 return labels 

 

 At first, we normalize the dataset to make the chunking 

process easier, by applying a min-max normalization (1) to 

bring all the coordinates in the interval [0-1]: 

                  (1) 

 

 Then we multiply each point with PN to bring the dataset in 

the 0-PN range on each dimension.  

The second step represents the core idea of the algorithm, 

which is to aggregate the points based on their location thus 

reducing the number of elements we work with. It stems from 

the objective of working with datasets with large number of 

points. We break the N dimensional space down into chunks 

that count the number of points located in them, thus making 

the number of points less relevant. Working with the generated 

chunks reduces significantly the data volume. 

As inputs we have the normalized dataset of points X, and 
PN. As a result of this step we get a density array, that 

represents the chunkified dataset. 

1 chunkify(X, PN) 
2   initialize densityArray with zeros 
3     for point in X:  
4       location = floor(point) 
5          where location has PN put PN-1 
6     densityArray[location]+=1 
7   return densityArray 

 

We transform the dataset into an N dimensional density 

array with PN elements on each dimension (line 2). Since each 

point now has the coordinates between [0-PN], by flooring the 

values of the coordinates on each dimension (line 4), we obtain 

indexes on all dimensions locating to the unit chunk that the 

point belongs to (line 6) the exception being points which have 

a value of exactly PN on any dimension which we place in the 

PN-1 chunk for that dimension. 

The third step is to find the possible cluster centroids. We 

need the density array calculated in the previous step and a 

chosen threshold as inputs. The result is a list of the cluster 

centroids.  

1 findCentroids(densityArray,threshold) 
2 clusterCentroids = [] 
3 for location in densityArray 
4   if (densityArray[location] >= threshold  
5        and isMaxima(densityArray, location)) 
6     add location to clusterCentroids 
7 return clusterCentroids 

 

We iterate through all the PNN elements in the density array 

(line 3) and check several conditions. Location represents an 

array with N elements containing the coordinates with which 

we access a chunk in the densityArray. First, for a chunk to 

be considered a centroid candidate, the value of the chunk must 

be greater than an input threshold (line 4). This reduces the 

possibility of noise chunks to create clusters. Second, the chunk 

must be a local maximum (line 5). 

 To be a local maximum, all of the neighbours of a chunk 

must have a value less than or equal to the chunk. We consider 

neighbours all chunks with a location that varies by at most 1 

on any axis. 

1 isMaxima(densityArray, location): 
2   neighbours = getNeighbours(location) 
3   for nb in neighbours: 
4  
if(densityArray[nb]>densityArray[location]): 
5       return False 
6   return True 
  

 GetNeighbors returns a list of locations of all the 

neighbors of the current location while making sure that the 

locations exist in the array meaning that on all dimensions, the 

values are between [0 - PN).  

 
1 getNeighbours(location): 
2  offsets= all N digit combinations of -1,0,1 
3  remove the 0 on all dimensions offset 
4  neighbours = [] 
5  for every offset in offsets 
6    newLoc = p + offset 
7     if newLoc>=0 and newLoc<PN   
8       neighbours append newLoc 
9   return neighbours 
 
 Once the cluster centroids candidates have been found, the 

algorithm goes through each candidate(SBM line 6) and, if the 

candidate was not included in another cluster yet(SBM line 8), 

it expands the cluster using the BFS approach. 

 The parameters for expand are: density array (dnstyA), the 

labels array we got so far (lblsA), the label with which we are 

marking the current cluster (crntLbl) and the list of the cluster 

centers (cc) to solve conflicts. The label of a cluster is the index 

of that clusters center in the cc array +1, this implies that the 

labels start from 1 and that label 0 represents unclustered. The 

output is an updated labels array which contains the expanded 

cluster. 

 
 expand(dnstyA,lblsA,crntLbl,cc) 
1 startC = cc[crntLbl] 
2  init visited, shaped as dnstyA, with false  
3  expansionQueue = [startC] 
4  lblsA[start] = crntLbl 
5  visited[start] = true 
6  dropoff = calcDropoff(array,startC) 
7  while expansionQueue not empty 
8   chunk = expansionQueue.pop() 
9   shape = shape of dnstyA 
10  nbrs = getNeighbours(chunk, shape) 
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11  for nbr in nbrs 
12   distance = distance(startC,nbr) 
13   minVal = dropoff*sqrt(distance) 
14   if not visited[nbr] and \ 
15         minVal<dnstyA[nbr]<=dnstyA[chunk] 
16     visited[nbr] = true 
17     if lblsA[nbr] == 0  
18       expansionQueue.push(nbr) 
19       lblsA[nbr] = crntLbl 
20     else //nbr was discovered already 
21       expand = solveConflict( 
22        dnstyA,lblsA,nbr,crntLbl,cc) 
23       if expand == true 
24          expansionQueue.push(nbr) 
25 return lblsA  
          

expand was developed in an empirical way starting from 

the base idea of BFS of expanding to the all the neighbours first. 

One of the first things we do is calculate the drop-off of the 

cluster which is a number that represents how quickly we 

should stop expanding. A high value means that the cluster is 

going to be discovered in only a few chunks and the expansion 

should stop soon. The distance from the center also plays a role 

in the expansion and by multiplying the square root of the 

distance with the drop-off value, we obtain a number which can 

be used as the minimum required amount of points for a chunk 

to be considered part of the cluster. 

It is possible that the chunk, to which we want to extend, is 

already assigned to a cluster (line 20). If so, we solve the dispute 

(line 21) and check if we should continue expanding that way 

or stop. 

To calculate the drop-off, we need the density array and the 

chunk for which we want to calculate the drop-off. Using a 

similar function to the Root Mean Square, we get an idea of 

how well the chunk fits with its neighbours. If a cluster has the 

drop-off of the center high, it means that the variation between 

the cluster center and its neighbours is high which means that 

the cluster does not extend on a large area.  

1 calcDropoff(dnstyA,chunk) 
2 dropoffSum = 0 
3  nbrs = getNeighbours(chunk,shape of dnstyA) 
4  for nbr in nbrs 
5    diff = dnstyA[chunk] - dnstyA[nbr] 
6    dropoffSum += (diff^2)/dnstyA[chunk] 
7  return sqrt(dropoffSum) 
 

We only expand to chunks that have a value less than or 

equal to the one of the chunks we expanded from. This is 

because we expect the data to have a gaussian distribution 

meaning that if we go further away from the center, we cannot 

get higher values. MinVal represents the minimum number of 

points a chunk must have to not be considered noise. It increases with 

the distance from the center because it is important to not consider 

noise chunks as part of the cluster. We expect to have less points that 

belong to the cluster the further away we go from its center, so they 

become more likely to be noise chunks.  

Once the conditions for expansion to a chunk were met, we 

need to check if the chunk was previously claimed by another 

cluster (expand line 17). If there is a conflict (expand line 20), 

we solve it by checking which of the two clusters (current 

cluster vs old cluster) has a greater pull on the conflict chunk. 

 To solve a conflict, we need the density array, labels array, 

the location of the conflict chunk, the label with which we were 

expanding (crntLbl) and the list of cluster centroids. The 

result is an updated labels array and a boolean signifying 

whether or not we should keep expanding in that direction. 

1 solveConflict(dnstyA,lblsA,loc,crntLbl,cc) 
2  crntClstr = cc[crntLbl] 
3  oldLbl = lblsA[loc] 
4  oldClstr = cc[crntLbl] 
5  if loc == oldClstr or  
7            dnstyA[loc] == dnstyA[oldClstr] 
6    in lblsA replace the oldLbl with crntLbl 
7    return false 
8  d1 = distance(loc, crntClstr) 
9  d2 = distance(loc, oldClstr)   
10 drop1 = calcDropoff(dnstyA,crntClstr) * d1 
11 drop2 = calcDropoff(dnstyA,oldClstr) * d2 
12 str1= dnstyA[crntClstr]/dnstyA[loc] - drop1 
13 str2= dnstyA[crntClstr]/dnstyA[loc] - drop1 
14 if str1 > str2 
15   lblsA[loc] = crntLbl 
16   return true 
17 else 
18   return false 
 

The calculation of the pull of a cluster results from an 

empirical formula based on the ratio between the cluster 

centroid and the conflict chunk, having a positive effect on the 

pull, the distance from the centroid of the cluster to the conflict 

point and the drop-off of the centroid, having a negative impact.   

There are 3 possible outcomes of the conflict: 

● The current cluster has a greater pull in which case we 

relabel the chunk and continue expanding (lines 15,16). 

● The old cluster has a greater pull (line 18) and we stop 

the expansion. 

● The old cluster was actually a subsection of the current 

cluster which happened to have a cluster centroid 

candidate and was expanded first (lines 6,7). 

Once all the cluster candidates have been considered for 

expansion, the last step is what we call the dechunkification of 

the labels array back into the labels of the dataset. We need the 

original dataset X, the labels array resulted from the BFS and 

the partitioning number PN, to output the final point labels. 

1 dechunkify (X, labelsArray, PN) 
2  initialize pointLabels with zeros 
3  for index from 0 to length(X): 
4    point = X[index] 
5    location = floor(point) 
6    pointLabels[index]=labelsArray[location] 
7  return pointLabels 

 PointLabels is an array having the length equal to the 

number of points in the dataset.  
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IV.EMPIRICAL VALIDATION 
For validation, we compared DBSCAN and K-Means to our 

algorithm on 4 datasets. The datasets have been chosen so that 

they have different types of densities and different amounts of 

overlapping. The 4 datasets are: S1, S2 and Unbalanced (U) 

provided by the University of Eastern Finland [9] and the fourth 

one, named Unbalance Overlapping (UO), was generated by us.  

The datasets are synthetically generated, have two-

dimensions and have the following characteristics: 

● S1 (Appendix, figure 1a) contains 5000 points 

distributed (Gaussian distribution) equally in 15 

clusters (333 points each) 

● S2 (Appendix, figure 1b) contains 5000 points 

distributed (Gaussian distribution) equally in 15 

clusters (333 points each)   

● U (Appendix, figure 1c) contains 6500 points in 8 

clusters, the 3 clusters on the right contain 2000 points 

each while the other 5 on the left side 100 each 

● UO (Appendix Figure 1d) contains 4300 points with the 

following distribution: 

❖ 500 points with the cluster center at [-2, 0] and a 

standard deviation of 0.8 (blue) 

❖ 50 points with the cluster center at [-2, 3] and a 

standard deviation of 0.3 (cyan) 

❖ 1000 points with the cluster center at [3, -2] and a 

standard deviation of 1 (magenta) 

❖ 1250 points with the cluster center at [5, 6] and a 

standard deviation of 1 (yellow) 

❖ 250 points with cluster center at [4, -1] and a 

standard deviation of 0.1 (red) 

❖ 1250 points with cluster center at [1, -2] and a 

standard deviation of 0.2 (green) 

We are interested in assigning the labeled points to the 

correct cluster, even if some points remain unlabeled (i.e points 

considered as noise). We compare the three algorithms using 

two external indices in two settings: 

1) the ALL setting includes all the points for the calculation of 

the accuracy, while  

2) the NNP setting (No Noise Points) will take into 

consideration only those points that have been labeled as 

belonging to a cluster (hence are not noise). 

Because in the used datasets all the points belong to a 

cluster, but SBM does not assign a cluster to all the points, we 

need the NNP setting to show the actual accuracy of the points 

labeled by SBM. 

SBM was designed to perform best for datasets with 

overlapping and unbalanced clusters such as the ones in the UO 

dataset. Even in the ALL setting, SBM performs better than 

other well-known algorithms for these cases (see last column in 

tables I and III). 

The two metrics considered are the Adjusted Rand Index 

(ARI) [7] and the Adjusted Mutual Information (AMI) [8]. The 

result of ARI for the ALL and NNP settings can be viewed int 

Table I and Table II, while the result for AMI in Table III and 

Table IV. 

 The ARI uses the Rand Index (RI) metric with a slight 

adjustment to deal with chances (3). RI, given by the formula 

(2), estimates clustering quality by taking pairs of points, 

looking if they are in the same cluster (these are called 

agreements) or different clusters (these are called 

disagreements) in the predicted (cluster defined) and the true 

labels. The formula is the division of the agreements by the sum 

of the agreements and disagreements. The resulting value is 

adjusted for chance.  

  

          (2) 

 

           (3) 

 

The Mutual Information (MI) of two clusters U and V is 

given by the formula (4) (where |X| is the number of points in 

the cluster X and N is the number of points in the dataset). The 

AMI is an adjustment for chance of the MI (5) (where H(U) is 

the entropy associated with U and E is the expected mutual 

information between two random clusters).  

(4) 

   (5) 

TABLE I.  ADJUSTED RAND INDEX VALUES OBTAINED BY THE 3 CLUSTERING 

ALGORITHMS (ALL SETTING) 

 S1 S2 U UO 

K-Means 99.49% 95.75% 100.00% 66.17% 

DBSCAN 96.96% 84.74% 99.99% 56.69% 

SBM 66.31% 53.60% 98.17% 84.56% 

TABLE II.  ADJUSTED RAND INDEX VALUES OBTAINED BY THE 3 CLUSTERING 

ALGORITHMS (NNP SETTING) 

 S1 S2 U UO 

K-Means 99.49% 95.75% 100.00% 66.17% 

DBSCAN 99.51% 97.37% 99.99% 57.40% 

SBM 100% 96.46% 99.99% 92.57% 

TABLE III.  ADJUSTED MUTUAL INFORMATION VALUES OBTAINED BY THE 3 

CLUSTERING ALGORITHMS (ALL SETTING) 

 S1 S2 U UO 

K-Means 99.46% 96.36% 100.00% 72.99% 
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DBSCAN 96.06% 88.61% 99.81% 63.13% 

SBM 83.34% 78.07% 93.29% 79.35% 

TABLE IV.  ADJUSTED MUTUAL INFORMATION VALUES OBTAINED BY THE 3 

CLUSTERING ALGORITHMS (NNP SETTING) 

 S1 S2 U UO 

K-Means 99.46% 96.36% 100.00% 72.99% 

DBSCAN 99.51% 98.03% 99.87% 63.48% 

SBM 100% 96.68% 99.75% 91.17% 

 The parameters used for DBSCAN are:  

● min points = log (dataset size) for all datasets 

● eps = 27000, 45000, 18000, 0.5 (S1, S2, U, UO) 

 The values used for k in K-Means are: 15 for S1, 15 for S2, 

8 for U and 6 for UO. 

On UO, we can see that the score of both K-Means and 

DBSCAN fall heavily, and we can easily see that they do not 

cluster correctly (Appendix, figures 2a and b), while SBM is 

able to find all of the clusters, but not all of the points of each 

cluster (Appendix, figure 3). We can also observe that SBM 

split the original yellow cluster in two, this is not a problem 

because a manual reviewer could merge those two clusters 

where as he could not split the clusters merged by K-Means 

(original blue and cyan are now one green cluster) and 

DBSCAN (original green, red and pink are now one red 

cluster). 

SBM does not perform that well on S1 and S2 and that is 

because of what is considered noise. We can also observe that 

by removing the points that were classified as noise, K-Means 

performs the same since it does not label noise, DBSCAN 

performs better and SBM has a massive improvement being 

close or even better than K-Means and DBSCAN. 

We also tested the duration of the execution for each 

algorithm. The implementation of the approach was done using 

python (version 3.6) with the following libraries: NumPy 

(version 1.16), matplotlib (version 3.1.0), sklearn (version 

0.21.2) [10] and pandas (version 0.24). 

SBM has a runtime somewhere in between K-Means and 

DBSCAN, this can be observed in Table V. We can also 

observe that the times across all datasets do not vary as much 

as they do for the other 2 algorithms.  

 The algorithms were run on a laptop with Intel Core i7 

4720HQ at 2.60GHz with 4 cores hyperthreaded, 16GB RAM 

at 1600MHz, NVIDIA GeForce GTX 950M with 2048 MB of 

VRAM,1 TB HDD with 5400 RPM with the following results 

(average over 100 runs): 

TABLE V.  CLUSTERING EXECUTION TIME 

 S1 S2 U UO 

K-Means 0.147s 0.208s 0.078s 0.100s 

DBSCAN 0.049s 0.062s 0.183s 0.091s 

SBM 0.127s 0.136s 0.117s 0.098s 

 

V.DISCUSSION AND CONCLUSIONS 

 The algorithm did achieve our goal of handling large 

datasets in a reasonable amount of time by running a 80.000 

point real life dataset in under 5 seconds, but this came at a cost 

in other parts. Due to the space and time complexity of PNN, the 

algorithm is very sensitive to the PN parameter and the number 

of dimensions of a point. PN even though is much smaller than 

the expected number of points in a dataset, if the points have 

many dimensions, the algorithm suffers. For example a dataset 

with 1.000.000 points and 10 dimensions, even for a partition 

number as low as 5, 510 chunks are created and at least 

8.000.000 of them are empty. On the other hand, if the number 

of dimensions is low and the number of points in the dataset is 

much larger than the partitioning number and since PN and N 

are fixed, O(PNN) the complexity of the algorithm is O(n) 
meaning that adding more points to the dataset will only 

increase the time linearly. 

 The partitioning number should also be large enough so 

that the unit chunks can separate the clusters, but not so large to 

make the centroid of a sparse cluster be undetectable. On our 

datasets, PN=25 seemed to be the best value. 

 In conclusion, SBM has a superior performance to K-

Means and DBSCAN when dealing with embedded clusters of 

different densities. It also has similar or better results when the 

clusters have the same density and some overlap when we allow 

for a certain amount of points to remain un-clustered. Also, if 

the number of dimensions is relatively small, the clustering is 

performed quite fast, having a complexity of O(n).  
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APPENDIX 

The following figures depict the datasets used for validation: 

 
Figure 1 – Datasets 

 
Figure 2 – DBSCAN and K-Means on UO 

 

Figure 3 – SBM on UO 
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