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Abstract—This paper is addressing the issue of image 

deblurring by employing a novel reinforced hybrid Wiener 

deconvolutional-convolutional neural network (HWDCNN) in 

the context of images affected by Gaussian blur. The proposed 

method is set to explore the capabilities of a custom NN layer 

that performs the classical Wiener deconvolution operator in a 

trainable manner, hence, leading to a blind deblurring method 

where the weights represent the point spread functions (PSF) 

and signal-to-noise ratios (SNR) of the deconvolution layer 

which are optimized in a traditional deep learning paradigm. 

Additionally, the custom layer is set as a first layer on two of the 

branches of the model, followed by layers of transposed 

convolution to explore possible synergies. The results indicate 

that this method outperforms known state-of-the-art methods 

for the presented dataset setup in terms of both structural 

similarity index measure (SSIM) and peak SNR (PSNR) metrics. 

Keywords—Deblurring, Deconvolution, Deblurring, Neural 
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I. INTRODUCTION 

In general, any signal acquisition process is subjected to 
distorting effects due to setup and camera imperfections and 
scene’s dynamicity. These imperfections can originate from 
various sources that add up to the measurements both linearly 
and nonlinearly [1]. For a single image, different patches at 
different scales can be affected by a variety of complex blur 
factors. Related to optics, focal length and aperture size of the 
measuring device can lead to different levels of Gaussian blur. 
Operation errors can also lead to out of focus blur, camera 
shake, motion blur or a mixture of them, both uniformly and 
nonuniformly distributed. On one hand, Gaussian blur can 
drastically lead to loss of edge information as the gradients are 
greatly reduced in affected image. On the other hand, motion 
blur results in ghost residuals that break the integral edge 
information, forming highly dense and nonlinear edges.  

The issue of signal restoration aims to mitigate 
measurement distortions as adequately and efficiently as 
possible, such that the restored signal has a one-to-one match 
representation, ideally at the same instance of time when the 
measurement is performed. Addressing every source of 
distortion at once is difficult and usually proves to be an 
unrealistic approach, reason why various methods were 
developed to address separately distortion effects. Blurring 
effect is among the most common distortions encountered in 
analog and digital image acquisition, which is given by several 
reasons, from relativistic motion between the measuring 
device and the target objects, inadequate calibration of the 

measuring device focus system to lighting or electromagnetic 
radiation conditions which can limit the number of captured 
photons and increases the required exposure time, in which 
again, chances for pronounced relative motion are increased 
[2]. Image deblurring is classified as a low-level, non-trivial 
issue within the computer vision and image processing 
frameworks, marking an important process of high interest for 
various domains from medical and astronomy imaging to 
surveillance, automation systems and media production. The 
base assumption is that, for any arbitrary blurred image 
corresponds a single sharp, latent image. Nonetheless, blur 
inversion is essentially an ill-posed issue as for any blurred 
image exists not one, but at least set of images that can 
correspond to that blurry image. Gradually increasing the blur 
distortion will lead to an increase in size of the set of 
corresponding latent images. Moreover, the image can pass a 
critical point of entropy from which the set of latent sharp 
images can become unreasonably enormous. This 
phenomenon can scale from a local patch within the image up 
to the entire sample. To get a better view, one can consider a 
simple image which captures details at different scales and a 
type of blur is applied. By increasing the blurring effect, the 
finer details are easier distorted up to a level in which recovery 
of actual information is totally lost and the left information is 
equally correlated with a vast set of latent representations. 
Continuing to increase the effect this phenomenon scales up 
in a finer-to-coarse manner. This is directly related to the low-
pass filtering characteristics of the blurring process, where the 
level of blurring effect is a function of the cut-off frequency, 
slope and attenuation level in spectral representation [3]. 

In conventional image processing approaches the problem 
is focused on identifying an inverse filtering operation for 
which a single or a set of PSF can reasonably reverse the 
blurring effects of the target images. Such a process is 
conventionally named deconvolution. This problem 
formulation is the most direct and intuitive approach in the 
framework of signal processing, where a blurred image is 
modeled as the convolution between a sharp image and a PSF, 
or a multiplication between the Fourier transform of the image 
and the transfer function. Depending on how the 
deconvolution operation is performed, this first problem 
formulation can prove to be ill-posed and unable to provide a 
unique solution. In a more abstract direction, the second 
formulation of deblurring is envisioned as an unknown 
function of a latent sharp image and a parameter vector. The 
deblurring process becomes the inverse of that function. This 
later formulation became a fit way to describe the issue from 



a machine learning (ML) perspective, especially in the blind 
approach. In this paper only the context of Gaussian 
deblurring is addressed through ML techniques. 

The rest of the paper is continued according to the 
following organization: Section II consists mainly of a brief 
presentation of the existing related work on the issue of image 
deblurring and proposed approaches, Section III presents the 
employed methods for the work of this paper, Section IV is 
reserved for the results of this work, and finally, Section V 
presents the conclusions related to this work and the directions 
for future work. 

II. RELATED WORK 

With the increasing interest from a vast set of 
technological and scientific domains into the subject of 
deblurring, a substantial level of efforts led in impressive 
results. Traditional methods approached this issue by 
separating the problem into two stages: firstly, the estimation 
of the blurring PSF, and secondly, the restoration of the image. 
This approach is known as the non-blind deblurring, whereas 
blind deblurring aims to restore an image without knowledge 
about the actual blurring PSF.  

Among the early and most common deblurring methods 
that emerged from the first type of problem formulation, 
deblurring as a deconvolution process, are the popular Wiener 
deconvolution and Lucy-Richardson (LR) deconvolution. The 
Wiener deconvolution method is a relatively simple, linear 
operation that inverses the blurring effect by a simple division 
of the image to a regularized estimated PSF in spectral 
domain. On the other hand, the LR method is a nonlinear, 
iterative method that can achieve greater performance, but 
becomes inefficient if the PSF is a function of unknown 
variables. Among these, another highly popular and widely 
employed nonlinear method is the Total Variation 
deconvolution algorithm which is specifically specialized in 
recovering sharp edges. Later, more sophisticated variations 
of these methods emerged, progressively introducing 
computational complexity with yet limited capabilities. 

With the advancement of deep learning methods, a rich 
repertoire of blind & non-blind deblurring solutions became 
available, making up for the vast majority of the related state-
of-the-art [4]. Initially, convolutional neural networks (CNN) 
were employed such that the convolution kernels estimate the 
PSF, constricting two levels, firstly for estimation and 
secondly for deconvolution [5]. Soon after, more 
straightforward approaches were developed in which CNNs 
were employed to directly identify a mapping between the 
blurred and sharp image. The work presented in [6] introduced 
DeepDeblur, a multi-scale (MS) CNN architecture  to solve 
dynamic scene blurring of multiple sources. The method is 
based on scale specialized stacked subnetworks that restore 
the latent image at downscaled versions in a coarse-to-fine 
procedure. Inspired by the success of the pyramidal model 
architecture and coarse-to-fine multiscale processing 
approach, other forms of this architecture have been proposed. 
In the work of [7] a similar scale recurrent NN (SRN) version 
of such pyramidal architecture is employed, matching and 
even outperforming the original with a more lightweight 
model. Another alternative based on recurrent NN is given by 
[8] where instead of a multi-scale training approach, a multi-
temporal progressive training approach is provided. The 
relatively recent work of [9] addressed the issue by proposing 
a totally different approach with the motivation to reduce 

model size by introducing modulated deformable 
convolutions for adaptive receptive fields which are argued to 
estimate the blurring PSF. Approaches based on generative 
adversarial networks (GANs) are of high popularity, 
managing to situate themselves among the top results [10]. 
Nonetheless, such approaches are difficult to train due to high 
instability and result in heavy, computationally demanding 
models. State-of-the-art results have been achieved by 
exploiting a model architecture initially proposed for image 
segmentation tasks such as the increasingly popular U-Net 
[11] which is composed of contracting paths capable to 
capture context and of symmetric expanding paths capable of 
precision localization. A modified version of U-Net, namely 
multiple input, multiple output (MIMO) UNet++ is proposed 
in the work of [12] where the encoder of UNet is adjusted to 
have as input multiscale images, similar to previous MS 
approaches, the decoder outputs deblurred images for a set of 
scales and an asymmetric feature fusion operation is 
introduced with the role to fuse the resulting multiscale 
features. The results indicate that the model outperforms the 
compared methods in terms of quality of the deblurred image 
and the computation time. In terms of images affected strictly 
by Gaussian blur and noise the work of [13] proposed a 
denoising prior driven deep NN (DPDNN), a model composed 
of denoising modules interleaved with back-projections, 
trained on the unfolded version of a custom iterative denoising 
algorithm. In paper [14] a multi-stream with attentional 
module and global information-based fusion network, namely 
MBANet, is proposed within a benchmark specifically 
designed for restoring images affected by Gaussian blur, 
obtaining results similar to the state-of-the-art under the 
similar setup configuration. 

III. METHODS 

A novel type of model is proposed which aims to exploit 
synergies from the interplay between a custom trainable 
Wiener 2D depth-wise separable deconvolution layer, 
transposed convolution layers and common convolution 
layers to address the issue of image deblurring.  

A. Trainable 2D Wiener deconvolution layer 

Despite its simplicity, the Wiener deconvolution method 
in its logic-based form, can offer reasonable results in image 
deblurring, especially if the PSF and the SNR values are 
rightly chosen. This aspect leads to the idea of parameter 
optimization for the extraction of useful features. On this 
assumption, a novel layer is proposed that implements the 
Wiener deconvolution method, optimizing in the same 
instance the weights representing the PSFs and the SNRs of 
the operator in tensorial form. The Wiener deconvolution 
method follows the first formulation paradigm, where the PSF 
is either known or estimated to inverse the effects blur effects 
on the image. An image, or in general any measurement 
acquired in a real-world scenario can be described 
mathematically as in equation (1) for the corresponding time 
representation:  

𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡) + 𝑛(𝑡) (1) 

where 𝑦(𝑡)  is the recorded measurement, 𝑥(𝑡)  is the true, 
latent representation of the measurement, ℎ(𝑡) is the system’s 
kernel or PSF from which distortions such as blurring can 
result and 𝑛(𝑡) is the additive channel’s noise, all of them at 
given arbitrary time instance 𝑡. In frequency representation 
the convolution operation becomes multiplication, described 
in equation (2) where every variable is represented by the 



Fourier transform. From this point of view, one is expected to 
recover the latent image 𝑋(𝜔) by applying equation (3). 

𝑌(𝜔) = 𝑋(𝜔) ∙ 𝐻(𝜔) + 𝑁(𝜔) (2) 

𝑋(𝜔) =
𝑌(𝜔) − 𝑁(𝜔)

𝐻(𝜔)
(3) 

But equation (3) implies firstly that 𝐻(𝜔) is known, which 
rarely is the case. Secondly, the higher spectra of the noise 
𝑁(𝜔) can be drastically amplified by dividing with the PSF, 
drowning the actual measurement in such noise. Thirdly, the 
deconvolution in this form allows for multiple solutions and 
requires various constraints and regularizations. Hence, the 
Wiener deconvolution aims to overcome this issue by 

estimating an appropriate kernel 𝐻̂(𝜔) such that the product 

of 𝐻̂(𝜔) ∙ 𝑌(𝜔)  gives a reasonable approximation 𝑋̂(𝜔)  of 
the measured target. Therefore, the trainable 2D Wiener 
deconvolution layer implements the operation as described in 
equation (4), where 𝐻(𝜔) and the SNR represent the trainable 
weights and 𝑌(𝜔) is the input image or feature map. 

𝑋̂(𝜔) = ℜ(𝑌(𝜔) ∙
1

𝐻(𝜔)
∙

1

1 +
1

|𝐻(𝜔)|2 ∙ 𝑆𝑁𝑅

) (4)
 

Conventional 2D convolution layers perform the operation on 
all image channels by summing the convolved channels into a 
single channel, resulting in a single channel for each filter. The 
proposed 2D Wiener deconvolution layer performs the 
deconvolution separately for each channel of the input image, 

resulting 𝑋̂(𝜔). The layer defines the PSF size as equal to the 
size of the input image and performs the deconvolution at once 
with the entire image. The output is transformed back to real 
values by taking only the real parts of the complex 
coefficients. The layer is implemented with TensorFlow 2.9.1. 

B. Model architecture 

The architecture of the model is constructed based on the 
coarse-to-fine approach, from which subnetworks are stacked 
to process input images at different sizes. Instead of taking as 
input images at different sizes or sequentially stacking 
subnetworks to operate at different scales, the proposed model 
takes a single image as input which is divergently propagated 
in 6 branches of autoencoders. Each autoencoder is composed 
firstly by 3 downsampling blocks that perform downsampling 
by applying a 2D convolution. The second and fourth 
branches are equipped with a deconvolution block that explore 
possible synergies and more complex operations. The second 
part of the autoencoders is composed of 3 upsampling blocks 
on every branch. Each branch (top-down) progressively 
defines greater kernels (for down and upsample blocks) to 
capture different scales within the input image. The latent 
vector is discarded from the architecture, as the downsampled 
feature maps are considered sufficient for proper restoration. 
After the first and second upsampling block, the outputs are 
concatenated with the feature maps from the second, 
respectively the first downsampling blocks from the 
corresponding branch through residual connectivity. The 
outputs of the odd autoencoders are summed up, similarly as 
the outputs of the even autoencoders. The summed outputs are 
concatenated with an upsampled feature map of the input. 
Finally, the resulted tensor is again convolved and 
downsampled to the size of the original image, which is 
expected to resemble the latent, sharp image. The final 
proposed model is composed of two sequentially stacked 
modules of the structure presented in Figure 1. 

 

Figure 1. Structure of the module for the proposed deblurring model. The 

model is constructed of two sequentially connected such modules. 

C. Dataset and model training 

For the work of this paper the GoPro dataset is employed 
as it became popular for deblurring benchmarks, both by 
considering the original data or altering the sharp data. The 
dataset contains 2103 sharp images with a resolution of 720 × 
1280 and the corresponding images with simulated 
nonuniform motion blur for training, respectively 1111 
images for testing. For this paper the training and test data 
considers only the custom Gaussian blurring distortions by 
convolving the sharp images with a PSF of size 17 × 17 for a 
range of standard deviations, from 1.6 to 2.4, with an 
increment of 0.2, as proposed in [14]. The final model is 
trained in an iterative fashion, where a first module is trained 
on the data formed with blur from the entire range of standard 
deviations. The weights from the trained module are frozen 
and another module is trained on top with data separately for 
each standard deviation. The Adam optimizer, decaying 
learning rate on plateau and a starting learning rate of 1e-4 are 
set as optimizing strategies. The loss function is defined as 
1 − 𝑆𝑆𝐼𝑀. Training time of the proposed method summed up 
to 29 hours for a notebook system with AMD Ryzen 9 
5900HX and Nvidia RTX 3080 16GB VRAM, inferring on a 
single sample with an average time of 135ms, with the 
consideration that the novel layer is not CUDA optimized, 
whereas the method in [14] trained for 1.5 days on a different 
system, achieving overall lower quality results in terms of 
PSNR and SSIM metrics in comparison to proposed method. 

IV. RESULTS 

Method is employed on the reserved GoPro test set with 
blurring setup discussed previously. To evaluate the 
performance of the proposed model, two standard metrics are 
considered, the PSNR and the SSIM. The results of the 
proposed method are compared with the results of the methods 
presented in [14] in Table 1 and Table 2. 

Table 1. PSNR metric results of state-of-the-art deep learning-based 

methods and the proposed method on the test data for the range of standard 

deviations of applied Gaussian blur. 

Methods 
Standard deviations  

Mean 
1.6 1.8 2.0 2.2 2.4 

SRN [14] 37.17 34.97 34.52 32.99 32.02 34.33 

DPDNN 

[14] 
37.58 36.49 35.10 33.82 33.08 35.21 

MBANet 
[14] 

37.99 36.48 35.16 34.04 32.99 35.33 

Proposed 38.87 37.71 36.84 35.56 34.39 36.67 

 



Table 2. SSIM metric results of state-of-the-art deep learning-based methods 
and the proposed method on the test data for the range of standard deviations 

of applied Gaussian blur.  

Methods 
Standard deviations  

Mean 
1.6 1.8 2.0 2.2 2.4 

SRN [14] 0.9777 0.9687 0.9648 0.9529 0.9430 0.9614 

DPDNN 
[14] 

0.9808 0.9760 0.9691 0.9598 0.9549 0.9681 

MBANet 

[14] 
0.9829 0.9760 0.9699 0.9619 0.9524 0.9686 

Proposed 0.9812 0.9765 0.9729 0.9626 0.9552 0.9696 

 

From the results presented in Table 1 and Table 2, the 
proposed method outperforms the previous methods analyzed 
in [14] for the suggested metrics, exception being the SSIM 
metric for the setup corresponding to 1.6 standard deviation. 
Although trained on the SSIM loss function, interestingly the 
method manages to outperform more on the PSNR metric. In 
Figure 2 are presented the deblurring comparison results of the 
model and compared methods on an arbitrary test sample. In 
terms of visual perception there are two main differences 
brought by the proposed method: firstly, edges become more 
prominent in comparison with the other methods; secondly, 
the restored test image with the proposed method resulted in a 
slight color shift from the original image, suggesting that the 
method requires more training time or the statistics of the test 
sample apart from the statistics of the training set. 

 

Figure 2. A) Cropped patch of sharp test sample. B) Gaussian blurred patch 
of test sample with 1.8 standard deviation. C) Restored patch by SRN. D) 

Restored patch by DPDNN. E) Restored patch by MBANet. F) Restored 

patch by proposed method. 

V. CONCLUSIONS 

The work of this paper addressed the issue of restoring 
images affected by Gaussian blur in 5 different scenarios with 
varying standard deviation by proposing a HWDCNN with 
parallel branching of autoencoders and enhanced with a novel 
Wiener deconvolution layer. In addition to the novel layer, the 

model is reinforced by an iterative training approach, stacking 
and training the same module on top of a previously trained 
module, method based on the assumption that the new module 
can exploit the information provided by a previous restoration 
module. The obtained results suggest that the proposed 
method can outperform the state-of-the-art methods on the 
same setup of the training and testing dataset. 

Future work will consist of extending the restoration 
method for performing on a higher diversity of blurring effects 
and characteristics, such as motion blur, shake blur and mixed 
nonuniform blur with saturation artefacts. 
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