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SUMMARY

Cancer treatment often fails because combinations of different therapies evoke complex resistance mecha- 
nisms that are hard to predict. We introduce REsistance through COntext DRift (RECODR): a computational 
pipeline that combines co-expression graph networks of single-cell RNA sequencing profiles with a graph- 
embedding approach to measure changes in gene co-expression context during cancer treatment. RECODR 
is based on the idea that gene co-expression context, rather than expression level alone, reveals important 
information about treatment resistance. Analysis of tumors treated in preclinical and clinical trials using 
RECODR unmasked resistance mechanisms –invisible to existing computational approaches– enabling 
the design of highly effective combination treatments for mice with choroid plexus carcinoma, and the pre- 
diction of potential new treatments for patients with medulloblastoma and triple-negative breast cancer. 
Thus, RECODR may unravel the complexity of cancer treatment resistance by detecting context-specific 
changes in gene interactions that determine the resistant phenotype.

INTRODUCTION

Cancers comprise heterogeneous populations of normal and 

malignant cells that respond differently to treatment, producing 

complex and dynamic patterns of efficacy and resistance that 

are hard to predict. 1,2 Cancers also vary in their dependence 

on therapeutic targets. Different tumors can be promoted or sup-

pressed by the same mutation, and cancers expressing similar 

levels of a drug target can vary in their response to small mole- 

cule inhibitors. 3–5 In the absence of better ways to predict 

treatment response, cancer therapy has evolved to include com- 

binations of different treatments in the hope they will evoke non- 

overlapping patterns of efficacy and resistance. 6–8 But combina- 

tion therapy also often fails, most likely because it does not
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account for the complex biology that underpins treatment 

resistance. 9 Consequently, 30–50% of patients with cancer fail 

first-line therapy, 10,11 the majority eventually dying of their 

disease. 12–14 

Advanced computation is being used increasingly in biomedi- 

cine to solve intractable problems. This includes the use of graph 

networks (GNs) 15–17 and machine learning 18,19 to interrogate 

large cancer datasets, such as cancer transcriptomes, with the 

goal of designing more effective treatments. Although these ap- 

proaches can map gene expression networks in cancer, they 

typically assign meaning to these networks by comparing them 

to gene sets detected in other, potentially less relevant, contexts 

and by employing relatively simple metrics to predict therapeutic 

targets e.g., gene expression level. None of these techniques 

have been widely established. 

Here, we introduce a natural language processing (NLP)-in- 

spired approach to design effective combination cancer treat- 

ments. NLP was originally developed to ‘‘read’’ large bodies of 

text, generating powerful representations of words with embed- 

ding vectors, thereby learning the context in which words are 

typically found. We reasoned that such word-embedding techni- 

ques could be repurposed for gene co-expression data, ena- 

bling gene co-expression relationships to be charted during can- 

cer development and treatment resistance. We hypothesized 

that genes undergoing the greatest change in transcriptome 

context contribute the most to disease progression and treat- 

ment resistance and are therefore effective treatment targets. 

By executing this approach through a single computational pipe- 

line that we term REsistance through COntext DRift (RECODR; 

Figure S1), we mapped changes in gene context during tumori- 

genesis and treatment resistance in a mouse model of a 

childhood brain tumor and in human medulloblastomas and tri- 

ple-negative breast cancers (TNBC) during therapy. RECODR 

unmasked resistance mechanisms–invisible to conventional ge- 

nomic and advanced computational approaches–that enabled 

the design of highly effective combination treatments for the 

mouse, and the prediction of potential new treatments for the pa- 

tients with medulloblastoma and TNBC in the clinic.

RESULTS

RECODR-prediction of primary tumor vulnerabilities 

Choroid plexus carcinoma (CPC) is a rare brain tumor of very 

young children that arises in the embryonic choroid plexus 

(CP). 20,21 No randomized clinical trials have been completed 

among children with CPC and no molecular targeted treatments 

for the disease have been identified. 22 TP53-mutant CPC is par- 

ticularly aggressive: most children with this disease die within 

five years of diagnosis. 

We previously generated a genetically engineered mouse 

model of CPC that recapitulates the histology, transcriptome, 

and DNA copy number variations of the human disease. 23,24 

To understand how CP is transformed to CPC, we generated sin- 

gle-cell RNA sequencing (scRNA-seq) profiles of 2,982 CPC 

cells and compared these with previously published CP 

scRNA-seq profiles 25 using RECODR. scRNA-seq profiles of 

CPC were validated as tumor cell-derived by stringent fluores- 

cence-activated cell sorting (FACS)—since our CPC is engi- 

neered to express yellow and red-fluorescence protein (YFP + /

RFP + ; Figures S2A and S2B)–and by inferred chromosomal 

copy number and structural variations that we confirmed using 

spectral karyotyping and fluorescence in situ hybridization 

(Figures S2C–S2G). 

RECODR organized genes within CP and CPC scRNA-seq pro- 

files into co-expression GNs in which genes with correlated ex- 

pression, and potentially related function, were clustered together 

into four distinct communities (Figures 1A and 1B; Table S1). In 

keeping with its origin, 91% (n = 2,030/2,235) of all genes in the 

CPC GN (GN CPC ) overlapped with those in the CP GN (GN CP ; rep- 

resentation factor for overlap, p = 2.4e-243) and three of the four 

communities in both GNs were enriched for genes associated 

with progenitor, immune, or mesenchymal cells (Table S1). 

Around one-third (n = 727/2,030) of genes common to both 

GNs were located in the same community type–we termed these 

‘‘retained’’ genes since they likely mediated similar functions in 

both the normal parent and malignant daughter tissue 

(Figure 1C). RECODR analysis of four human CPC single nuclear 

RNAseq profiles produced a similar GN structure (Figure S3A and 

Table S1). Therefore, like other childhood cancers 26 CPC appears 

to retain features of the embryonic parent tissue, suggesting 

stalled development contributes to its pathogenesis. 

But RECODR also detected striking differences between the 

GN CP and GN CPC (Figure 1C; Table S2). In keeping with a role 

for stalled development in CPC tumorigenesis, a large commun- 

ity of genes associated with ciliated epithelium on the GN CP was 

replaced on the GN CPC by a community of genes associated with 

embryonic and malignant CP (CP/CPC community). Further- 

more, two-thirds (n = 1,303/2,030) of genes that persisted on 

the GN CPC from the GN CP switched community type during 

transformation, suggesting the functional context of these genes 

was altered in tumors—we termed these ‘‘switched’’ type genes. 

Nine percent (n = 205/2,235) of genes were newly recruited to the 

GN CPC during transformation (Figure 1C and Table S2). 

To gain further insights into how each gene changed its tran- 

scriptome context during transformation, we deployed the 

graph-embedding approach within RECODR to learn and com- 

pare the context of each gene between the GN CP and GN CPC 

(Figure S1). First, using the Node2Vec 27 algorithm, RECODR 

took 200 random walks from each gene across the GN CP and 

GN CPC creating 100,000s of walks. RECODR then fed these 

walks into the Word2Vec 28 neural network to learn the context 

of each gene in each GN. RECODR then calculated a context 

drift score for each gene by summating four independent metrics 

(STAR Methods): (1) neighbor numbers score – the number of 

new genes directly connected to the index gene on the GN CPC 

relative to the GN CP normalized to the total number of genes in 

the GN CPC ; (2) graph reach score – the number of immediate 

neighbors of the index gene on the GN CPC plus the unique con- 

nections of these direct neighbors normalized to the total num- 

ber of genes on the GN CPC ; (3) neighbor cosine score – the aver- 

age transcriptome position shift determined as the average of all 

cosine vector scores of genes directly connected to the index 

gene; and (4) index gene cosine score – the transcriptome posi- 

tion shift determined as a cosine vector score of the index gene. 

Genes with the highest context drift scores were located within 

the progenitor and CP/CPC communities, suggesting these 

played the greatest role in CPC tumorigenesis (Figures 1C, 

S3B, and S3C; Table S2). Genes ‘‘newly’’ recruited to the
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GN CPC progenitor community displayed the highest context drift 

and were especially enriched for regulators of ataxia telangiecta- 

sia mutated (ATM; FDR = 7.0e-37; Table S2), including Kat5. 29 

Genes ‘‘retained’’ by the progenitor community were enriched 

for regulators of embryonic neural progenitors (FDR = 4.3e-43) 

and various DNA repair pathways, pinpointing these as poten- 

tially important in the maintenance of CPC (Table S2). Genes 

that ‘‘switched’’ community type to the GN CPC progenitor com- 

munity were enriched for regulators of protein and energy pro- 

duction that are well recognized features of malignancy. 30,31 

Since regulators of DNA repair displayed high levels of context 

drift during transformation of the CP, we looked to see if DNA re- 

pair was important for maintaining CPC. First, we measured the 

impact of knocking down 227 DNA repair genes on CPC clono- 

genic colony formation in vitro. Seventy of these genes were re- 

quired for efficient colony formation (Figure 1D and Table S3). 

These required genes were highly enriched for regulators of dou- 

ble-strand break repair via ATM, including Kat5–the second

A B

C

D

Figure 1. Gene context drift during CPC tu- 

morigenesis

RECODR generated graph networks (GNs) of 

scRNA-seq profiles of (A) embryonic choroid 

plexus (CP) and (B) untreated CPC. Pie charts in- 

dicate the number of genes in progenitor (Prog), 

immune (Imm), mesenchymal (Mes), epithelial 

(Epi) or CP/CPC communities. Chi-square reports 

differences in gene numbers in communities be- 

tween (GNs).

(C) Alluvial plot of gene locations between com- 

munities in the GN CP and GN CPC . Enriched path- 

ways in relevant gene groups are shown with false 

discovery rates. Frequency plots of gene-types 

reported in the main text are shown right. The as- 

sociated pie charts report the proportion of ‘‘new’’, 

‘‘switched’’, and ‘‘retained’’ genes in the corre- 

sponding communities. Venn diagrams bottom 

show overlap in genes in the indicated communities 

between GN CP and GN CPC with representation 

factor (RF) and associated p-value for overlap.

(D) Cartoon illustrates the approach to calculate 

the percent colony formation by fluorescence- 

activated cell sorting (FACS) isolated CPC, mouse 

neural stem cells (mNSCs) and mouse RTBDN- 

driven ependymoma cells reported in the graph 

following shRNA silencing of the indicated DNA 

repair transcript relative to matched-control 

transduced cells (circles are average, error bars 

standard error). Only genes demonstrating sig- 

nificant (p < 0.05) growth suppression in CPC cells 

are shown. New (green), switched (brown) and 

retained (red) genes also present on the GN CPC are 

highlighted. Enriched pathways in CPC depend- 

ency genes are shown.

most required gene—supporting the no- 

tion that gene context drift detected by 

RECODR identifies genes important in 

transformation. 

To test more directly if ATM is a thera- 

peutic vulnerability of CPC, we treated 

mice with CPC with four different regi- 

mens of the blood-brain barrier penetrat- 

ing ATM inhibitor AZD1390 (Figures S4A–S4C). 32,33 We com- 

pared this treatment to various doses and schedules of 

fractionated radiotherapy that is used to treat older children and 

adults with CPC (Figures S4D–S4G). Two AZD1390 protocols sig- 

nificantly suppressed CPC growth, one of which also extended 

mouse survival. To our knowledge, this is the first report of single 

agent ATM inhibitor efficacy in cancer. Like human CPC, the 

mouse disease was also sensitive to radiation therapy. 

To benchmark RECODR’s prediction of ATM as a therapeutic 

vulnerability, we also analyzed CP and CPC scRNA-seq profiles 

using differential gene expression analysis and three more ad- 

vanced computational approaches that were developed to pin- 

point key signal pathways and/or therapeutic targets from 

scRNA-seq data (see STAR Methods): Weighted Gene Co-ex- 

pression Network Analysis (WGCNA), 34 Differential Co-expres- 

sion Analysis (diffcoexp; https://github.com/hidelab/diffcoexp) 

and single-cell DRUG (scDRUG). 35 None of these approaches 

identified ATM as a high-priority target in CPC (Tables S4 and S5).
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RECODR-predicts monotherapy resistance 

Like most human cancers treated with monotherapy, all 

CPCs treated with AZD1390 or radiation ultimately rela- 

psed (Figures S4F and S4G). Therefore, we looked to see if 

RECODR could identify genes that changed their context during 

monotherapy resistance since we hypothesized these contrib- 

uted to treatment failure. To do this, we used RECODR to com-

A B

C

D

Figure 2. Gene context drift during mono- 

therapy resistance

(A) Cartoon depicting the analysis of scRNA-

seq profiles by RECODR during monotherapy 

resistance.

(B) RECODR generated graph networks (GNs) of 

scRNA-seq profiles of CPC that relapsed during 

AZD1390 (top) or irradiation (bottom) therapy.

Venn diagrams report numbers of genes in the

indicated GN communities. Chi-square reports 

differences in gene numbers in communities be- 

tween relapsed CPC and control CPC GNs. Allu-

vial plots of gene communities in (C) GN CP ,

GN CPC , GN AZD1390 , and (D) GN CP , GN CPC , GN IR. 

Enriched pathways in relevant gene groups 

are shown with false discovery rates. Frequency

plots of gene-types reported in the main text are 

shown right in each. The associated pie charts 

report the proportion of ‘‘recalled’’, ‘‘new’’, 

‘‘switched’’, and ‘‘retained’’ genes in the corre- 

sponding communities.

pare scRNA-seq profiles of untreated 

CPC with those generated from tumors 

that had failed AZD1390 (n = 48,068 cells) 

or radiation (n = 17,544 cells) treatment 

(Figure 2A). 

Despite their different modes of 

action, RECODR generated very similar 

GNs of AZD1390- (GN AZD1390 ) and radia- 

tion-relapsed (GN IR ) tumors that were 

strikingly different from the GN CPC , sug- 

gesting tumors resisted these treatments

through similar mechanisms (Figure 2B; 

Tables S1 and S2). Both relapsed GNs

contained progenitor communities that

were two to three-times larger than that 

of the GN CPC . Like the transcriptome 

changes detected by RECODR during 

the transformation of CP to CPC, genes 

in these progenitor communities had 

undergone the greatest context drift dur- 

ing treatment resistance, suggesting they 

were particularly important in resisting 

AZD1390 or radiation monotherapy

(Figure S5A and Table S2). Remarkably, 

around a third of these relapsed progen- 

itor community genes were absent from 

the untreated GN CPC , but present in the

embryonic GN CP , suggesting that these 

genes mediated functions that had been 

‘‘recalled’’ from the ancestral embryonic 

tissue during treatment resistance 

(Figures 2C and 2D; Table S2). ‘‘Recalled’’ genes accounted 

for 42% (n = 1,696/4,035) and 34% (n = 1,261/3,509) of all genes 

on the GN AZD1390 and GN IR , respectively. These data are in keep- 

ing with observations that primitive fetal programs reemerge dur- 

ing treatment resistance in cancer. 5,36 ‘‘Recalled’’ genes further 

enriched relapsed progenitor communities with regulators of the 

cell cycle (e.g., Cdk6, Cdk7, Ccna2, Ccnb2, and Ccnd3) and DNA
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double-strand break repair (e.g., Parp1, Rad50, Rad51) and 

underwent the highest context drift of any genes in relapsed tu- 

mors (Figures 2C, 2D, and S5B; Table S2). The remaining genes 

within relapsed progenitor communities were ‘‘retained’’ from 

the GN CPC progenitor community, or ‘‘switched’’ from other 

community types in the GN CPC . Surprisingly few genes were

‘‘new’’ to the GN AZD1390 or GN IR .

Thus, RECODR predicted that CPCs resisted AZD1390 and 

radiation monotherapy by retaining cell proliferation and DNA re- 

pair activity present in untreated tumors, and enhancing these 

functions further by recalling capabilities active in embryonic 

CP. Indeed, nuclear γH2AX expression that marks DNA dou- 

ble-strand breaks decreased significantly in monotherapy resist- 

ant CPCs indicating increased DNA repair capacity in resistant 

tumors (Figures S5C and S5D). 

To test if genes that changed their context the most during 

AZD1390 and radiation resistance drove treatment failure, we 

looked for inhibitors of genes displaying the highest context drift

A

B

C

D

E

Figure 3. RECODR identification of drug 

targets in monotherapy resistant tumors

(A) Triage of candidate gene targets to mitigate 

both AZD1390 and radiation monotherapy resist- 

ance (prog. com = progenitor community; BBB = 

blood brain barrier).

(B) Ranked context drift scores of all genes on 

the GN AZD1390 (top) and GN IR (bottom). Exemplar 

target genes emerging from triage process are 

shown with associated inhibitors in square 

brackets.

(C) Preclinical trial designs to mitigate mono- 

therapy resistance (n = number of mice enrolled in 

each arm).

(D) Survival curves for the corresponding pre- 

clinical treatment protocols in (C). Monotherapy 

treatments are shown for comparison (p values 

report the Log-Rank statistic relative to control 

treatment).

(E) Waterfall plots reporting tumor growth sup- 

pression of each individual mouse tumor over time 

during the indicated treatment. Bars report the 

total area under the curve of tumor growth over 

time measured by weekly tumor bioluminescence 

relative to control treated growth (p values record 

significant difference in growth relative to controls 

by Mann–Whitney test).

scores between the GN CPC and relapsed 

GNs. To select targets and matched 

inhibitors with the greatest probability 

of translation, we triaged the 4,035 

and 3,509 genes on the GN AZD1390 and 

GN IR , respectively, for those: (1) ‘‘re- 

called’’ to progenitor communities on 

both the GN AZD1390 and GN IR –since 

these had the highest context drift 

scores; (3) with clinically proven inhibitors 

known to cross the blood-brain barrier; 

and (3) with inhibitor classes previously 

tested in children (Figure 3A and 

Table S2). The 13 targets emerging from 

this triage process included Ezh2 that was recently suggested 

to mediate histone methylation and repression of ZIC4 in human 

CPC, 37 and Dhfr that has been targeted successfully with metho- 

trexate among children with TP53-mutant CPC 38 (Figure 3B). In- 

deed, DHFR protein expression was increased significantly 

in CPC cells following AZD1390 or radiation resistance 

(Figures S5E and S5F). 

The remaining 11 triaged targets included Parp1 for which a 

new inhibitor (AZD9574) was recently designed to cross the 

blood-brain barrier to treat brain tumors. Therefore, we tested 

if PARP1 inhibition could mitigate AZD1390 or radiation mono- 

therapy resistance by dosing CPC-bearing mice with AZD9574 

following, and/or during, AZD1390 or radiation treatment. Toxic- 

ity precluded simultaneous dosing of mice with AZD1390 and 

AZD9574. We compared this treatment to therapy with 

AZD9574 alone that RECODR predicted would be inactive 

against untreated CPC: Parp1 was absent from the GN CPC 

(Figure 3C; Tables S1 and S2). In keeping with these predictions,
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AZD9574 monotherapy was ineffective against previously un- 

treated CPC but significantly enhanced the efficacy of either 

AZD1390 or radiation alone (Figures 3D and 3E). 

Benchmarking again demonstrated that RECODR out-per- 

formed other target prediction approaches: Parp1 was not dif- 

ferentially expressed, or differentially co-expressed (deter- 

mined by diffcoexp), among untreated or relapsed CPC cells; 

scDRUG predicted PARP1 to be an equally effective target in 

previously untreated, AZD1390-and radiation-relapsed tumors, 

likely because the model underlying scDrug is trained on can- 

cer cell lines in vitro that are unlikely to capture the full com- 

plexity of transcriptomic structures in vivo; and WGCNA de- 

prioritized PARP1 in radiation-relapsed tumors relative to 

RECODR (Tables S4 and S5).

RECODR-predicts combination therapy resistance 

Although adding AZD9574 to AZD1390 or radiation treatment in- 

creased therapeutic response, all mice receiving AZD1390 and 

AZD9574 relapsed, and only 20% of mice receiving AZD9574 

and radiation achieved long-term survival. Therefore, we looked 

to see if RECODR might help design more effective combination 

treatment strategies. We focused on combinations of AZD1390 

and radiation that are being tested in the clinic (NCT03423628). 

We randomized 65 mice with CPC to one of seven different 

AZD1390 and radiation combination protocols ranging from 

low to high intensity (Regimens A-G; Figure 4A). Five regimens 

(B, C, E, F and G) inhibited CPC growth and/or extended mouse 

survival significantly more than monotherapy alone, although all 

protocols eventually failed (Figures 4B–4H). 

To identify genes that might have driven resistance to combi- 

nation AZD1390 and radiation treatment, we generated 8,032 

scRNA-seq profiles from Regimen-E relapsed tumours–a com- 

bination similar to that used in the clinic–and compared these 

with GNs of CP, untreated CPC, and monotherapy relapsed tu- 

mors using RECODR (Figure 4I). The Regimen-E relapsed CPC 

GN (GN Reg− E ) contained a markedly expanded immune com- 

munity relative to that of either monotherapy relapsed GN or un- 

treated GN CPC (Figures 5A and 5B; Table S1). RECODR also as- 

signed the highest context drift scores to genes within the 

GN Reg− E immune community (Figures S5G and S5H; 

Table S2). This expanded immune community included 82% 

(n = 390/475) and 53% (n = 1,538/2,912) of all genes that were

‘‘new’’ to the GN Reg− E or ‘‘recalled’’ from the embryonic GN CP ,

respectively. These genes enriched the GN Reg− E for regulators 

of innate immunity, microglia, macrophages and an immune sig- 

nature associated with embryonic CP, suggesting that immune 

function was important in CPC resistance to combination 

AZD1390 and radiation (Figure 5B and Table S2). 

The GN Reg− E also contained an expanded progenitor com- 

munity like that seen in the GN AZD1390 and GN IR : 65% (n = 

1,904/2,909) of GN Reg− E progenitor community genes overlap- 

ped with those of the GN AZD1390 and/or GN IR progenitor com- 

munities. The expanded GN Reg− E progenitor community was en- 

riched with the same cell cycle and DNA repair regulators 

recruited to monotherapy relapsed GNs, and Regimen-E re- 

lapsed tumors displayed increased expression of DHFR protein, 

and decreased expression of γH2AX protein, indicative of en- 

hanced cell cycle and DNA repair activity, respectively 

(Figures S5C–S5F).

Thus, RECODR unmasked a complex pattern of gene context 

drift during combination AZD1390 and radiation treatment resist- 

ance that included changes induced uniquely by the combina- 

tion (immune community expansion) as well as those driven by 

either therapy alone (progenitor community expansion). 

The expansion of the immune community in Regimen-E re- 

lapsed tumors was surprising since all scRNA-seq profiles 

were derived from YFP + /RFP + tumor cells that we stringently iso- 

lated by FACS (Figure S2). We reasoned that this could have re- 

sulted from increased numbers of CPC cells displaying myeloid 

mimicry. 39 Indeed, the immune communities of all GNs were en- 

riched for a myeloid mimicry signature previously described in 

glioma (Table S1). Alternatively, it remained possible the 

GN Reg− E immune community originated from inadequately sep- 

arated brain resident microglia and/or tumor associated 

macrophages. 

We took two approaches to distinguish these possibilities. 

First, we conducted extensive multiplex profiling of cell surface 

antigens–including TREM2 40–42 that marks microglia and 

macrophages–together with chromosome 15 copy number flu- 

orescence in situ hybridization. This identified a subpopulation 

of high-TREM2 + /GFP + /Chromosome 15-gained bona fide ma- 

lignant cells specifically in Regimen-E relapsed CPCs that 

were readily distinguishable from GFP − /TREM2 + /CD45 + / 

CD68 + /P2Y12 + /CD49d + tumour-associated macrophages 

and GFP − /TREM2 + /CD45+/CD68 + /P2Y12 + /CD49d − microglia 

(Figures 5C and 5D; Figures S5I–S5K). Second, we used Visium 

HD spatial transcriptomics to identify cells in control and 

Regimen-E relapsed CPCs with abnormal karyotypes (using in- 

ferred chromosome copy number variance including gain of 

chromosome 15; STAR Methods) that expressed the immune, 

progenitor and/or mesenchymal communities. Immune com- 

munity expression–as well as expression of progenitor and 

mesenchymal communities–was significantly more enriched in 

tumor cells than those with inferred diploid genomes 

(Figures S6A and S6B), and immune community gene expres- 

sion was more enriched in Regimen-E relapsed than control 

CPC cells (Figures 5E, S6C, and S6D). Notably, Visium HD de- 

tected concurrent expression of progenitor, immune and mes- 

enchymal communities within the same spatial bins, suggesting 

these are co-expressed in the same, rather than different, 

CPC cells. 

To see if the immune community included targets to mitigate 

combination AZD1390 and radiation resistance, we triaged the 

5,849 genes on the GN Reg− E for those: (1) ‘‘recalled’’ or ‘‘new’’ 

to the GN Reg− E immune community; (2) with clinically proven in- 

hibitors known to cross the blood-brain barrier; (3) with inhibitors 

previously tested in children; and (4) with inhibitors that targeted 

multiple immune community genes since we reasoned these 

may disrupt treatment resistance the most (Figure 6A and 

Table S2). The multi-kinase inhibitor dasatinib ranked top among 

11 drugs triaged in this manner, both in terms of the number of 

target genes present in the Regimen-E relapsed immune com- 

munity (Lyn, Syk, Hck, Vav1, Irak2, Fgr, Sla, Btk, and Nck1) and 

their summated context drift scores (Figure 6B and Table S2). 

In stark contrast, few dasatinib targets with relatively low context 

drift scores were located on the GN CPC (Grb2), GN AZD1390 (Irak2, 

Fer, Grb2) or GN IR (Nck1, Grb2; Table S2). Thus, we hypothe- 

sized that dasatinib would mitigate combination AZD1390 and
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Figure 4. Combination AZD1390 and irradiation treatment regimens

(A) Preclinical trial designs to mitigate monotherapy resistance (n = number of mice enrolled in each arm). 

(B–H) Waterfall plots (top in each) reporting the growth suppression of each individual tumor over time during the indicated treatment. Bars report the total area 

under the curve of tumor growth over time measured by weekly tumor bioluminescence relative to control treated growth (p values record significant difference in 

growth relative to controls by Mann–Whitney test). Survival curves (bottom in each) report survival for the corresponding preclinical treatment protocols. 

Monotherapy treatments are shown for comparison (p values report the Log-Rank statistic relative to control treatment). 

(I) Cartoon depicting the analysis of scRNA-seq profiles by RECODR during monotherapy and combination treatment resistance.
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A

B

C D E

Figure 5. Gene context drift during Regimen-E combination treatment resistance

(A) RECODR generated graph networks (GN) of scRNA-seq profiles of CPC that relapsed during Regimen-E treatment. Venn diagram reports number of genes in 

the indicated community. Chi-square reports differences in gene numbers in communities between Regimen-E relapsed CPC and the other indicated GNs.

(B) Alluvial plot of gene communities in GN CP , GN CPC , GN AZD1390 , GN IR and GN Reg− E . Enriched pathways in relevant gene groups are shown with false discovery 

rates. Frequency plots of gene-types reported in the main text are shown right in each. The associated pie charts report the proportion of gene-types (key far right) 

in the corresponding communities.

(legend continued on next page)
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radiation therapy resistance but be ineffective as a primary treat- 

ment or at preventing monotherapy resistance. 

To test these predictions, we randomized 36 mice with CPC 

among five different treatment arms: dasatinib alone; dasatinib 

following AZD1390 monotherapy; or dasatinib in the context of 

limited (Regimen E-D1), extensive (Regimen E-D2) or intermittent 

(Regimen E-D3) outgrowth of AZD1390 and radiation combina- 

tion resistant tumors (Figure 6C). In keeping with RECODR’s pre- 

dictions, neither dasatinib alone, nor AZD1390 followed by dasa- 

tinib proved effective treatments of CPC, and Regimen E-D1 was 

no more effective than Regimen-E alone (Figures 6D and 6E). 

Conversely, Regimens E-D2 and E-D3 markedly and signifi- 

cantly suppressed tumor growth and increased mouse survival 

relative to Regimen-E: 60% of mice receiving E-D2 achieved 

long-term survival with no evidence of relapse. Thus, RECODR 

accurately predicted the context-specific value of dasatinib ther- 

apy in the treatment of CPC, allowing the rationale design of a 

highly effective combination treatment protocol for this rare 

cancer. 

In benchmarking studies, Diffcoexp detected only low levels of 

co-differential expression of a single dasatinib target (Grb2) 

among CPCs receiving different treatments, and no dasatinib 

targets were detected as differentially expressed among 

CPCs, regardless of treatment status (Figure 6F and Table S4). 

WGCNA K-scores had limited power to discriminate potential 

target genes in Regimen-E relapsed CPCs, and WGCNA 

K-scores failed to prioritize dasatinib as a useful treatment to mit- 

igate Regimen-E relapse (Figures 6G–6I).

RECODR predictions for clinical trials 

As a first step to test if RECODR could be applied to improve the 

treatment of patients, we generated GNs and context drift 

scores from pre- and post-treatment human cancer sc- or single 

nuclear (sn)-RNA-seq profiles (Figures 7A and 7B). 

First, we analyzed paired, tumor scRNA-seq profiles gener- 

ated from Sonic Hedgehog (SHH, n = 2), Group 3 (n = 2) or Group 

4 (n = 3, including one metastatic tumor) medulloblastomas at di- 

agnosis and following relapse after combination surgery/radia- 

tion/chemotherapy. It is well established that Group 3 and meta- 

static medulloblastomas are the most treatment resistant forms 

of the disease, but the mechanism(s) driving this resistance is not 

known since subtype-specific gene signatures are generally sta- 

ble between diagnosis and relapse. 43,44 Remarkably, the 4,500 

genes displaying the greatest context drift between diagnosis 

and relapse did so within the transcriptomes of both Group-3 

and a metastatic Group-4 medulloblastomas: these same genes 

displayed little context drift in SHH- and non-metastatic Group-4 

tumors (Figure 7C and Table S6). Importantly, only 1% (n = 482/ 

4,500) of genes with the highest context drift scores overlapped 

with those with the most variable levels of expression that clus- 

tered tumors by subtype (Figures S7A and S7B). Thus, RECODR 

context drift scores provide information that is distinct from that

of gene expression level. Triaging genes with the highest context 

drift score in Group-3 tumors for those with inhibitors previously 

tested in children and that cross the blood brain barrier, identi- 

fied 12 therapies that we predict might mitigate Group-3 treat- 

ment resistance (Figure 7D). Eight of these drugs are already in 

clinical (metformin, palbociclib, temsirolimus, and regorafenib) 

or preclinical (lithium, benziodarone, trametinib, and dabrafenib) 

development for medulloblastoma. Our data strongly suggest 

that these drugs are most likely to mitigate treatment resistance 

of Group-3 medulloblastoma and may well be judged ‘‘inactive’’ 

if tested in other tumor subtypes. 

To extend the use of RECODR beyond childhood brain tu- 

mors, and to test if gene context drift can be detected immedi- 

ately following treatment, rather than after relapse, we analyzed 

snRNA-seq profiles of TNBC generated from 47 women before, 

and immediately following, neoadjuvant chemotherapy as part 

of the PARTNER clinical trial 45,46 (Figure 7B). TNBC is the 

most treatment-resistant type of breast cancer, but how these 

tumors fail therapy is unclear. Unsupervised hierarchical clus- 

tering of TNBCs using 4,500 genes with the most varying con- 

text drift scores identified four discrete subgroups (A to D; 

Figures 7E and 7F; Table S6). Although neither BRCA muta- 

tional status, PAM50 type, treatment arm nor treatment re- 

sponse varied significantly among these subgroups, Group B 

included 12 tumors that displayed particularly high gene con- 

text drift scores. Like medulloblastoma, TNBC subgroups iden- 

tified by hierarchical clustering of context drift scores differed 

from those identified by gene expression level (Figures S7C 

and S7D). Thus, we propose that Group B represents a previ- 

ously unknown subgroup of TNBC with an intrinsic capacity 

for marked transcriptome evolution. RECODR predicted nine 

treatments that might be added to Group B neoadjuvant ther- 

apy should these tumors ultimately relapse (Figure 7F). Six of 

these drugs are already in active clinical (ribociclib, ixazomib, 

and regorafenib) or preclinical (midostaurin, tazemetostat, and 

dabrafenib) development for TNBC.

DISCUSSION

Here, we introduce RECODR: a computational pipeline that 

combines co-expression GNs with a graph-embedding ap- 

proach to measure how genes change their co-expression con- 

text within cancer transcriptomes during tumorigenesis and 

treatment resistance. RECODR is based on the idea that 

changes in gene context during therapy, rather than expression 

level alone, reveal important information about the evolution of 

tumor transcriptomes and treatment resistance mechanisms. 

Through a series of preclinical trials in a mouse model of CPC, 

we show how RECODR can detect changes in gene context 

that occur in response to single treatments and unmask complex 

changes in gene context that occur when these therapies are 

combined. We further show that genes undergoing the greatest

(C) Frequency plots of TREM2 immunofluorescence across different conditions and control (untreated CPC) in GFP + CPC cells or GFP − /CD45 + /CD69 + /CD49 +

tumor associated macrophages (TAMs). Arrow indicates subpopulation of TREM2 high expressing CPC cells.

(D) Representative concurrent TREM2 immunofluorescence and chromosome 15 FISH of Regimen-E treated CPC. Scale bar = 20μm.

(E) Enrichment of expression of the indicated community detected by Visium HD spatial transcriptomics analysis of control and Regimen-E relapsed CPC (scale

bar = 1μm). Frequency plots of relative enrichment of expression of the indicated community in CPC following the indicated treatment detected by Visium HD (p

value, Mann–Whitney test).
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context drift likely contribute the most to disease resistance and 

are therefore effective drug targets to mitigate treatment failure. 

By extending the use of RECODR to human medulloblastoma 

and TNBC, we provide evidence that our approach could en- 

hance clinical trial design by identifying tumors with particularly 

high levels of gene context drift that might be at risk of treatment 

failure, and by pinpointing potential treatments to mitigate resist- 

ance. Thus RECODR, and the underpinning principle of gene 

context drift, provide a way to conceptualize, chart, and prevent

cancer treatment resistance, particularly among cancers in 

which context-specific gene interactions determine the malig-

nant phenotype. 4,5

A B

C D

E

F G

H I

Figure 6. RECODR enables effective com- 

bination treatment design

(A) Triage of candidate gene targets to mitigate 

Regimen-E resistance (BBB = blood brain barrier).

(B) Ranked context drift scores of all genes on the 

GN Reg− E . Lollipops mark target genes of the in- 

dicated inhibitors. Number of targets and sum of 

context drift scores (CDS) are shown right.

(C) Preclinical trial designs to mitigate Regimen-E 

resistance as well as dasatinib monotherapy and 

AZD1390-Dasatinib combination (n = number of 

mice enrolled in each arm).

(D) Survival curves for the corresponding pre-

clinical treatment protocols in (C). Monotherapy

treatments are shown for comparison (p values

report the Log-Rank statistic relative to control 

treatment).

(E) Waterfall plots reporting growth suppression of

individual tumors over time during the indicated 

treatment. Bars report the total area under the 

curve of tumor growth over time measured by

weekly tumor bioluminescence relative to control 

treated growth (p values record significant differ- 

ence in growth relative to controls by Mann– 

Whitney test).

(F) Expression of dasatinib targets detected by 

Visium HD spatial transcriptomics in control and 

Regimen-E relapsed CPC (scale bar = 1mm).

(G) Comparison of distributions of WGCNA 

K-scores and RECODR context drift scores in 

Regimen-E relapsed tumors.

(H) Triage of candidate gene targets detected by 

WGCNA to mitigate Regimen-E resistance (BBB = 

blood brain barrier).

(I) Ranked WGCNA K-scores of all genes on the 

GN Reg− E . Lollipops mark target genes of the in- 

dicated inhibitors. Number of targets and sum of 

WGCNA K scores are shown right.

No current computational approaches 

to discover cancer drug targets are 

based on the concept of gene context 

drift. 15–19 By deploying this approach, 

RECODR has the advantage of ‘‘learning 

the meaning’’ of the context of each gene 

within the actual tissue of interest, rather 

than assigning meaning to gene expres- 

sion through comparison to pathways 

and interactions previously defined in 

other contexts. RECODR thereby ena- 

bles the operator to rank the potential importance of genes in tu- 

morigenesis and treatment resistance without the need for prior 

knowledge. Indeed, in our benchmarking studies RECODR out- 

performed existing conventional and advanced computational 

approaches–including WGCNA, diffcoexp and scDRUG– 

underscoring its potential added value. 

Our work also places further focus on the plasticity of cancer 

cell transcriptomes as a means to resist cancer treatment. At 

least two mechanisms can bring about changes in cancer cell 

genotype/phenotype during treatment. It is well established 

that rare subpopulations of treatment-resistant cancer cells 

can outgrow more sensitive cells during therapy. 5,47 But cancer
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cells also exhibit transcriptome plasticity, enabling individual 

cells to adapt their gene expression in response to microenvir- 

onmental stress, promoting cell survival. For example, the ca- 

pacity of cancer cells to reacquire embryonic stem cell-like 

states in response to chemotherapy is well described. 5,36 But 

whether these embryonic programs are reactivated in malig- 

nant stem cells–the progeny of which alter the balance of cell 

types in the cancer–or if gene expression is altered directly in 

more differentiated cancer cells, remains to be determined. 36 

RECODR showed that one-half of all significantly co-expressed 

genes in combination AZD1390 and radiation resistant CPCs 

were ‘‘recalled’’ from the embryonic CP to communities of 

genes associated with progenitor, immune or mesenchymal 

functions. Furthermore, the GFP + /RFP + cells that populate 

our CPC mouse model included progenitor, immune and mes- 

enchymal-like cells that shared the same chromosome copy 

number variations, strongly supporting the notion that these 

cells share a common, clonal origin. Since lineage tracing of 

CP has revealed a common origin for ciliated epithelial and 

neuronal cells, 25 then we predict this plasticity is inherited by 

daughter tumors. Notably, our spatial transcriptomic studies 

identified co-expression of progenitor, immune and mesenchy- 

mal community genes in the same cells rather than labeling dis-

A B

C

D

E

F

Figure 7. RECODR analysis of medulloblas- 

toma and triple negative breast cancer

Cartoons depicting the approach taken to analyze 

medulloblastoma (A) and triple negative breast 

cancer (TNBC, B) derived sc/snRNA-seq data by 

RECODR (n = number of patients with paired 

samples).

(C) Unsupervised hierarchical cluster analysis of 

4,500 genes with the most variable context drift 

scores in patients with medulloblastoma. Sub- 

group status and case number are shown.

(D) Ranked context drift scores generated by 

RECODR of all genes in the indicated medullo- 

blastoma subtypes. Lollipops mark target genes 

of the indicated inhibitors emerging from triage of 

target genes. Number of targets, sum of context 

drift scores (CDS) and the status of the inhibitor 

are shown below.

(E) Unsupervised hierarchical cluster analysis of 

4,500 genes with the most variable context drift 

scores in patients with TNBC. Subgroups A–D 

detected by cluster analysis are shown with their 

corresponding treatment type from (B), BRCA 

mutational status, and neo-adjuvant treatment 

response.

(F) Ranked context drift scores generated by 

RECODR of all genes in TNBCs. Lollipops mark 

target genes of the indicated inhibitors emerging 

from triage of target genes. Number of targets, 

sum of context drift scores (CDS) and the status of 

the inhibitor are shown below.

tinct tumor cells. These data are com- 

patible with extreme plasticity in CPC 

transcriptomes, and with topic modeling 

of embryonic CP scRNA-seq profiles in 

which considerable temporal and topo- 

graphical plasticity was seen in gene 

co-expression patterns across various normal CP cell types. 25 

Future work will be required to further characterize this plasti- 

city that likely underpins the capacity of CPC cells to adapt 

to, and ultimately resist, treatment. 

The increased number of TREM2 + myeloid-like tumor cells fol- 

lowing Regimen-E combination treatment resistance was unex- 

pected. Non-malignant, immunosuppressive myeloid cells are 

established contributors to tumor progression and are viewed 

as potential cancer treatment targets. 40,48 But cancer cells can 

also adopt myeloid-like states to create an immunosuppressing 

tumor microenvironment. 39 It is noteworthy that SYK —a dasati- 

nib target that RECODR predicted could be targeted to mitigate 

combination treatment resistance— is central to TREM2 signal- 

ing. 42 TREM2 is known to signal via SYK to promote myeloid cell 

survival in the brain and can be targeted to remodel the land- 

scape of tumor-infiltrating macrophages. 49 Thus, dasatinib 

may target a TREM2-SYK signaling axis to prevent Regimen-E 

treatment failure. Importantly, since CPC cells co-expressed 

progenitor and immune communities, then the success of 

AZD1390, radiation and dasatinib combination may stem from 

their successful disruption of both co-expression communities 

and their associated functions in cancer cells. Review of combi- 

nation AZD1390 and radiation clinical trials in glioblastoma and
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CPC will be important to determine if similar treatment resistance 

and mitigation mechanisms operate in these diseases. 

Finally, efforts to circumvent cancer treatment resistance in 

the clinic have focused on combining treatments that proved ef- 

fective as single agents in the hope they will evoke non-overlap- 

ping patterns of efficacy and resistance. 6–8 Designing more ra- 

tional treatment combinations has not been possible because 

existing approaches do not adequately predict the complex biol- 

ogy that drives treatment resistance; therefore, treatment resist- 

ance remains the leading cause of cancer-related death. Our 

studies of medulloblastoma and TNBC, together with our pre- 

clinical CPC work, suggest that RECODR could prove useful in 

the prospective and real-time design of effective combination 

cancer treatments in the clinic.

Limitations of the study 

While RECODR accurately identified ATM, PARP1, and proteins 

inhibited by dasatinib as useful treatment targets in CPC, testing 

all RECODR-predicted target genes relative to their gene context 

drift score is limited by preclinical experimental capacity and 

drug availability. We are seeking to overcome this challenge us- 

ing large-scale CRISPR screens that delete 10s–100s of 

RECODR-predicted genes in vivo. Preclinical studies of other 

cancer types will also be required to determine how often gene 

context drift occurs across cancer types, and therefore how gen- 

eralizable RECODR is likely to be as a cancer treatment predic- 

tion tool. While our analysis of human medulloblastoma and 

TNBC scRNA-seq profiles identified patients displaying high lev- 

els of gene context drift who we predict are at high-risk of re- 

lapse, further follow up these patients, and those with other can- 

cers, it will be required to determine how accurately gene 

context drift predicts risk-of-relapse and mitigating treatments 

in the clinic. Finally, although each of the variables that make 

up the gene context drift score can vary independently, future 

studies may identify elements of the score that are consistently 

less informative: these may ultimately be removed from 

RECODR, increasing computational efficiency.
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STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies [clone where available]

Anti-TREM2 antibody [EPR26210-1] Abcam Cat#ab305103; RRID: AB_3086793

Anti-CD68 antibody [KP1] Abcam Cat#ab955; RRID: AB_307338

InVivoMAb anti-mouse/human VLA-4 (CD49d) BioXCell Cat#BE0071

Alexa Fluor® 647 anti-mouse CD45 Antibody Biolegend Cat#160304

Mouse monoclonal turboGFP antibody Origene Cat#TA150041; RRID: AB_2622256

Anti-Hck (phospho Y410) antibody Abcam Cat#ab61055; RRID: AB_942255

anti-Lyn antibody Abcam Cat#ab137338; RRID: AB_3099739

anti-Dihydrofolate reductase (DHFR) antibody Abcam Cat#ab152159; RRID: AB_3099740

Culture reagents, chemicals/drugs and probes

Neurobasal media ThermoFisher Scientific Cat#21103-049

L-Glutamine Gibco Cat#25030-081

N2 Gibco Cat#17502-048

B27 Gibco Cat#17504044

Penicillin/Streptomycin Gibco Cat#15140-122

bFGF Miltenyi Biotech Cat#130-093-243

hrEGF Miltenyi Biotech Cat#130-097-751

BSA 7.5% Sigma-Aldrich Cat#A8412

FBS (heat inactivated) Gibco Cat#A5256801

StemPro Accutase Gibco Cat#A1110501

KaryoMax Colcemid Invitrogen Cat#15212012

Papain from papaya latex Sigma-Aldrich Cat#P4762

DNAseI VWR Cat#A3778

HBSS, no calcium, no magnesium, no phenol red ThermoFisher Scientific Cat#14175095

DAPI Sigma-Aldrich Cat#D9542

D-Luciferin Perkin-Elmer Cat#122799

Matrigel Corning Cat#354230

DMEM (1X) Gibco Cat#11965092

methanesulfonic acid (MSA) Sigma-Aldrich Cat#471356

Tween 20 Sigma-Aldrich Cat#P1379

Tween 80 Sigma-Aldrich Cat#P1754

Dasatinib MedChemExpress Cat#HY-10181

AZD1390 AstraZeneca NA

AZD9574 AstraZeneca NA

fish skin gelatin Sigma-Aldrich Cat#G7041

True Black Reagent Biotium Cat#23007

XMP 15 Mouse Chromosome painting probe Metasystems Cat#D-1415-050-OR

Fixogum rubber cement VWR Cat#ICNA11FIXO0125

Prolong Diamond Antifade Mountant ThermoFisher Scientific Cat#36961

Xylene ThermoFisher Scientific Cat#X/0200/17

Hematoxylin Sigma-Aldrich Cat#51275

Bluing buffer Epredia Cat#10381775

Alcoholic Eosin Abcam Cat#ab246824

Hydrochloric acid ThermoFisher Scientific Cat#J/4320/15

Potassium Hydroxide ThermoFisher Scientific Cat#P/5640/53

SPRIselect beads Beckman Coulter Cat#B23318
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METHOD DETAILS

Cell culture and tissue analysis 

Fluorescence-activated cell sorting (FACS) 

Tumors were freshly isolated from mice by micro-dissecting and dissociation for 1 h at 37 ◦ C in enzymatic dissociation solution con- 

taining 20U/ml of papain (Sigma-Aldrich, P4762) and 100μg/ml of DNAseI (VWR, A3778) in high glucose DMEM (Gibco, 11965092) 

with 2mM L-Glutamine, 5% penicillin/streptomycin, and 10% FBS (Gibco, A5256801). Following dissociation at 37 ◦ C, cells were tri- 

turated 5–6 times before being passed through a 40μm filter. The original tube containing cells was washed with 5mL of HBSS 

(ThermoFisher Scientific, 14175095) which was then passed through the same 40μm filter. Cells were then centrifuged for 5 min 

at 4 ◦ C and 300g. Following centrifugation, the supernatant was discarded, and the cell pellet was re-suspended in 10mL HBSS 

before being passed through a second 40μm filter. The cell suspension was then centrifuged for 5 min at 4 ◦ C and 300g. Following 

centrifugation, cells were re-suspended and transferred to a FACS tube. Dual RFP and YFP cells were flow sorted using a BD Aria II 

(BD Biosciences) with the following gating strategy, forward and side scatter, singlets and dual RFP (561nm-585/29) and YFP 

(488nm-530/40) positive cells. Dead cells were excluded with DAPI, UV (355nm-450/50). 

Cell culture 

CPC cells were maintained in cell culture at 37 ◦ C with 5% CO 2 in neurobasal media (ThermoFisher scientific, 21103-049) supple- 

mented with N2 (Gibco, 17502-048), serum-free B27 (Gibco, 17504044), L-Glutamine (Gibco, 25030-081) and penicillin/streptomycin 

(Gibco, 15140-122), 100μg/ml bFGF (Miltenyi Biotech, 130-093-243), 100μg/ml hrEGF (Miltenyi Biotech, 130-097-751) and 7.5% 

BSA (Sigma-Aldrich, A8412). Cells were grown until neurospheres formed. For cell passaging, neurospheres were centrifuged at 

50g before being passed through a 40μm filter. Flasks were then rinsed with 5mL PBS and passed through the same filter. 2mL

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse BD Fc Blocking solution BD Biosciences Cat#553141

Critical commercial assays

Tissue Pretreatment Kit OGT Cat#LPS100

Deposited data

Raw single cell RNA-sequencing data Current manuscript GEO: GSE252995

Experimental models: Organisms/strains

mCPC model Tong et al. 23 Tumors generated by in vivo 

electroporation and cells 

maintained as allografts. 

Available on request

Software and algorithms

R https://www.r-project.org/ NA

Seurat https://satijalab.org/seurat/ NA

CONICSmat https://github.com/Neurosurgery-Brain- 

Tumor-Center-DiazLab/CONICS

NA

Python https://www.python.org/ NA

Scanpy https://scanpy.readthedocs.io/en/stable/ NA

spatialdata-io https://spatialdata.scverse.org/

projects/io/en/latest/

NA

infercnvpy https://github.com/icbi-lab/infercnvpy NA

NetworkX https://networkx.org/ NA

python-louvain https://github.com/taynaud/python-louvain NA

Node2Vec https://github.com/eliorc/node2vec NA

Gensim https://github.com/piskvorky/gensim NA

Procrustes alignment https://gist.github.com/zhicongchen/

9e23d5c3f1e5b1293b16133485cd17d8

NA

Gephi https://gephi.org/ NA

Cell Ranger https://www.10xgenomics.com/support/

software/cell-ranger

NA

Space Ranger https://www.10xgenomics.com/support/

software/space-ranger/latest

NA

HALO(R) https://indicalab.com/halo/ NA
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of StemPro Accutase (Gibco, A1110501) was then added and cells dissociated for 15 min at 37 ◦ C. Neurospheres were then triturated 

and passed through a 40μm filter into 20mL of media. Cells were then centrifuged at 118g for 5 min before being re-suspended in 

complete media at a 1:2 dilution. 

Chromosome painting 

Cells were plated in 6-well plates (1.5million cells/well) and incubated for 24 h. Colcemid (Invitrogen, 15212012) was added to arrest 

cells in metaphase and incubated for 6 h. After 6 h, cells were triturated to dissociate clumps, collected in 1mL PBS and centrifuged at 

400g for 8 min at room temperature. 10mL of hypotonic solution (0.0075M KCl in dH2O) was added, and cells were incubated for 

12 min. After 12 min, 1mL of fixative (3:1 methanol: acetic acid) solution was added, and cells were centrifuged at 400g for 8 min 

at room temperature. Following centrifugation, the supernatant was removed, and 5mL of fixative solution was added and centri- 

fuged at 400g for 8 min at room temperature. This washing step was repeated three times followed by dropping onto slides. The 

slides were allowed to dry for 3 h. Metaphase was then confirmed by staining with DAPI (Sigma-Aldrich, D9542) followed by two 

washes with PBS and imaging by confocal microscopy. 

For multiplex fluorescence in situ, hybridisation (M-FISH), 10μL of 24 colors human M-FISH paint probe mix generated at the Well- 

come Trust Sanger Institute as previously described 50 was denatured at 65 ◦ C for 10 min and then applied to the denatured slides. 

Slide denaturation was performed by immersing slides into alkaline denaturation solution (0.5M NaOH and 1M NaCl) for 40 s before 

being rinsed with 1M Tris-HCl at pH 7.4 for 3 min followed by 1X PBS for 3 min and then dehydrated with 70%, 90% and then 100% 

ethanol. For hybridisation, slides were incubated for 10 min at 37 ◦ C for 40–44 h. After incubation, slides were washed with 0.5X saline 

sodium citrate (SSC) for 5 min at 75 ◦ C, then rinsed with 2X SSC +0.05% Tween 20 for 5 min and washed with 1X PBS for 2 min at room 

temperature. Slides were then mounted with SlowFade Diamond Antifade Mountant containing DAPI. Images were taken on a Zeiss 

AxioImager D1 fluorescent microscope. M-FISH images were captured with the SmartCapture software (Digital Scientific UK) and 

processed with SmartType Karyotypes software (Digital Scientific UK). 

Immunofluorescence staining 

Formalin fixed paraffin embedded tissue sections were first deparaffinized and treated using a standard antigen unmasking step in 

10 mM Tris/EDTA buffer pH 9.0. Sections were then blocked with Mouse BD Fc Blocking solution (BD Biosciences, 553141) and trea- 

ted with True Black Reagent (Biotium, 23007) to quench intrinsic tissue autofluorescence. 

Detection of mouse chromosome 15 was performed on FFPE sections. Pretreatments were carried out using the Tissue Pretreat- 

ment Kit (OGT, LPS100) according to manufacturer’s instructions: Incubation with Tissue Pretreatment Solution (Reagent 1 at 98 ◦ C 

for 10 min followed by 3 min wash in milliQ water twice, 8 min incubation with Enzyme Reagent (Reagent 2) at 37 ◦ C followed by 3 min 

wash in milliQ water twice). Slides were dehydrated through graded ethanol. Ready-to-use XMP 15 Mouse Chromosome painting 

probe (Metasystems, D-1415-050-OR) was applied to each slide and coverslips were sealed with Fixogum rubber cement (VWR, 

ICNA11FIXO0125). Slides were denatured for 5 min at 75 ◦ C before hybridisation overnight in a humid chamber at 37 ◦ C. Rubber ce- 

ment was carefully peeled off and coverslips were removed by soaking in 2X SSC +0.05% Tween 20 (Sigma-Aldrich, P1379) followed 

by a wash in 0.4X SSC buffer at 72 ◦ C for 2 min and 2X SSC +0.05% Tween 20 for 30 s. Slides were incubated with DAPI for 5 min at 

room temperature in the dark. Slides were washed for 5 min each in 3 changes of PBS prior to mounting with Prolong Diamond Anti- 

fade Mountant (ThermoFisher Scientific, 36961). 

The sections were then treated with a 1-min additional heat mediated antigen retrieval step in Tris/EDTA buffer. The sections were 

then immunoreacted for 1 hour at RT using 1μg/ml cocktail mixture of immunocompatible antibody panels (see key resources table 

for antibody sources). This step was followed by washing off excess primary antibodies in PBS supplemented with 1 mg/mL fish skin 

gelatin (Sigma-Aldrich, G7041) and staining the sections using a 1μg/ml cocktail mixture of the appropriately cross-adsorbed sec- 

ondary antibodies (purchased from either ThermoFisher Scientific, Jackson ImmunoResearch or Li-Cor Biosciences) conjugated 

to one of the following spectrally compatible fluorophores: DyLight 405, Alexa Fluor 488, Alexa Fluor 546, Alexa Fluor 594, Alexa Fluor 

647, Cy5.5 or IRDye 800CW. After washing off excess secondary antibodies, sections were counterstained using DAPI to visualize 

cell nuclei. Coverslips were then placed on slides using Prolong Diamond Antifade Mountant and imaged using the Vectra Polaris 

(described in ‘image acquisition’ below). 

Image acquisition 

All fluorescently labeled slides were scanned on the Vectra Polaris at 40X magnification using appropriate exposure times. Whole- 

slide images were scanned with 7-color whole-slide unmixing filters (DAPI + Opal 570/690, Opal 480/620/780 and Opal 520). Library 

slides were generated from representative tissue sections to allow for accurate unmixing of the multiplexed samples, including a slide 

stained for each single fluorophore, a DAPI only slide and an autofluorescence slide wherein no antibody, or DAPI was applied. The 

unmixing performance of this tissue-specific spectral library was compared to that of the synthetic Opal library available in inform. 

Resultant image tiles were then stitched together within HALO(R) (Indica Labs) to produce a whole-slide multichannel, pyramidal 

OME-TIFF image for downstream imaging analysis. 

shRNA screen 

shRNAs were generated and used in knock-down studies as described previously. 51 Briefly, shRNAs targeting each candidate DNA 

repair enzyme (or scrambled) were designed using the shRNA sequence prediction algorithm from Dharmacon/Thermo Scientific. 

shRNAs were cloned into the pFUGWH1-CFP vector and transformed into bacteria as one ligation product. The transformed bacteria 

were then spread on an LB/AMP plate and individual colonies were screened for unique shRNA constructs by sequencing. All con- 

structs were sequence verified. DNA was fugene (Roche) transfected into 293FT cells (Invitrogen) along with lentiviral packaging plas- 

mids for viral production. Virus titer was determined by cyan fluorescence protein (CFP) expression and transduced into CPC,
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RTBDN-ependymoma or mouse neural stem cells. Cells were then plated as single cells and colony formation determined after 72– 

120 h.

Single cell and spatial transcriptomics 

Single cell RNA-sequencing (scRNAseq) 

Sorted cells derived from untreated (n = 2), AZD1390 relapsed (n = 3), radiation relapsed (n = 3), or Regimen-E relapsed (n = 6) CPCs 

were submitted for 10X sequencing and libraries were prepared using the Chromium Single Cell 3 ′ Reagents kit v.3. Briefly, samples 

were resuspended in PBS with 0.04% BSA and loaded onto the Chromium microfluidic chip (10X Genomics) to generate single-cell 

bead emulsions with individual 10X barcodes. RNA from barcoded cells was reverse transcribed in a C1000 Touch Thermal cycler 

(Bio-Rad) and libraries were prepared according to manufacturer’s protocols (12 cycles were used for cDNA amplification). cDNA 

quantity and quality were measured using an Agilent TapeStation 4200 (High Sensitivity 5000 ScreenTape). About 375ng of material 

was used for library preparation and library quality was assessed with a TapeStation 4200 (High Sensitivity D1000 ScreenTape). Li- 

braries were normalized to equal molar concentrations (10nM) and pooled. Sample pools were sequenced on a NovaSeq 6000 to the 

following parameters: 28bp, read 1; 8bp, i7 index and 91bp, read 2, aiming for 20000 reads per cell. RNA reads were processed by 

Cell Ranger (10x genomics) and aligned to the mouse (mm10) genome. The filtered gene matrices were then used as the input for 

downstream analysis pipelines. 

Single cell/nucleus RNA-sequencing analysis 

scRNAseq was analyzed in R using Seurat. First, for each condition, individual samples were read into R using the Read10X func- 

tion followed by merging samples from the same condition using the merge function. The PercentageFeatureSet function was then 

used to calculate the percentage of counts derived from mitochondrial genes. The data was filtered to include cells with more than 

200 genes, less than 3000 genes and less than 20% mitochondrial content per cell. Next, cells were log normalized using the Nor- 

malizeData function. The FindVariableFeatures and ScaleData functions were then run to find the top 2000 most variable features 

and scale the dataset (with total number of RNA counts and percent mitochondria regressed out). Downstream clustering was 

then carried out by applying the RunPCA, FindNeighbors, FindClusters, RunUMAP and RunTSNE functions using default param- 

eters. Differential expression between different cell types was carried out with the Seurat pipeline run on merged control and re- 

lapse setting datasets and then using the Wilcoxon Rank-Sum test with the FindMarkers function with default parameters for 

Seurat version 4. Normal mouse choroid-plexus single-cell datasets (GSE168704) were processed using the standard Seurat 

workflow. Human single nucleus RNA-sequencing (snRNAseq) of human CPC (GSE264154) were processed using the standard 

Seurat workflow. 

Visium HD 

Formalin fixed, paraffin-embedded (FFPE) sections of each tumor tissue were cut to a thickness of 5μm with the 6.5 mm × 6.5 mm 

region of interest (ROI) placed centrally on the slide and then deparaffinized. Briefly, tissue sections were incubated at 60 ◦ C, 

cooled and then incubated in xylene (ThermoFisher scientific, X/0200/17) twice (two separate jars of xylene) for 10 min each. 

Next, slides were incubated in 100% ethanol twice (two separate jars of 100% ethanol) for 3 min each. Slides were then incubated 

in 96% ethanol twice (two separate jars of 96% ethanol) for 3 min each before finally being incubated in 70% ethanol twice (two 

separate jars of 70% ethanol) for 3 min each and then washed in water twice for 20 s each. The deparaffinized slide was incubated 

in hematoxylin (Sigma-Aldrich, 51275) for 1 min before hematoxylin was removed with 3 washes in water. Bluing buffer (Epredia, 

10381775) was then added to the slide and incubated for 1 min before being washed in water. Next, the slide was incubated in 

alcoholic Eosin (Abcam, ab246824) for 1 min. Finally, the slide was washed by incubating in water for 30 s and coverslips applied 

over tissue sections. 

Deparaffinized slides were placed in the 6.5mm Visium HD cassettes with the gasket mounted over the ROI. Tissues were de- 

stained with 0.1N hydrochloric acid (ThermoFisher scientific, J/4320/15) and incubated for 15 min at 42 ◦ C before 10X decrosslinking 

buffer was added to tissue sections and incubated for 30 min at 80 ◦ C. The 10X mouse whole transcriptome probes were hybridized 

overnight by adding the 10X FFPE hybridization buffer, nuclease free water and left- and right-hand side whole transcriptome mouse 

probes. Hybridization was carried out at 50 ◦ C. Probe ligation was then carried out with a master mix of nuclease free water, 10X 

probe ligations buffer and 10X probe ligation enzyme and incubated for 1 h at 37 ◦ C. During probe ligation, Visium HD slides were 

brought to room temperature and washed in 0.1X SSC. After probe ligation, tissue sections were washed in 10X post-ligation 

wash buffer for 10 min at 57 ◦ C (two washes of 5-min each). Visium HD slides were equilibrated by adding a master mix of nuclease 

free water, 10X RNase buffer and 10X RNase enzyme in the capture regions and incubated for 10 min at room temperature. Slides 

were then allowed to dry. Slide information was entered into the CytAssist. Tissues were re-stained with alcoholic Eosin for 1 min at 

room temperature before being washed with PBS. Slides were then loaded onto the CytAssist and ROIs centered within the 

6.5 mm × 6.5 mm fiducial frame. The probe release mix composed of 10X RNase buffer, 10X RNase enzyme and 10X permeabiliza- 

tion Enzyme B was prepared and added into the spacer well of the Visium HD slide. The CytAssist was then run for 30 min at 37 ◦ C to 

release probes from tissue sections to 8μm bins of the Visium HD slide. After 30 min the Visium HD slide was removed and probes 

were extended with a master mix of 10X extension buffer and 10X extension enzyme for 1 h at 53 ◦ C (two washes of 30 min each). 

Probes were then eluted from the Visium HD slide with 0.08M potassium hydroxide (ThermoFisher scientific, P/5640/53) and incu- 

bated for 10 min at room temperature. Solutions from every capture area of the Visium HD slide were transferred into PCR tubes and 

neutralized with 1M Tris-HCl. Pre-amplification buffer composed of nuclease free water, 10X Amp-mix B and 10X TS Primer mix was 

added and 10-cycles of pre-amplification were carried out on a thermal cycler. The pre-amplification product was cleaned up with
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1.2X SPRIselect beads (Beckman Coulter, B23318) and the 100μL eluate was taken forward for library preparation. Visium HD libra- 

ries were prepared by adding an amplification master mix composed of nuclease free water and 10X Amp mix B and samples indexed 

with dual index TS Set A index and then incubated in a thermal cycler. Libraries were cleaned up with 0.85X SPRIselect beads re- 

sulting in a 25μL eluate. Library quality was confirmed on the Agilent TapeStation 4200. Libraries were quantified with a qubit and 

then normalized to 10mM. Finally, samples were pooled and sequenced on a NovaSeqX to a target of 275 million reads per capture 

area to the following parameters: 43 bp, read 1; 10 bp, i7 index; 10bp, i5 index and 50 bp, read2. 

Space ranger 

Space Ranger was run on FASTQ files for each sample. Folders for each sample contained their corresponding FASTQ files, a TIFF 

image of the H&E and a TIFF image taken from the Visium CytAssist instrument. The Space Ranger ‘count’ pipeline was then run 

with the following options, –id set to the experiment name, –transcriptome set to the mm10-2020-A mouse genome reference, 

–probe-set set to to the ‘Visium_Mouse_Transcriptome_Probe_Set_v2.0_mm10-2020_A’ which was supplied with Space Ranger, 

–fastqs, –cytaimage, –image set to the experiments FASTQ files, CytAssist image and H&E image respectively, –create-bam set 

to False, –reorient-images set to True, –slide set to the slide ID and –area set to the slide area the H&E was assigned to on the Visium 

slide. All remaining options were kept at their default parameters. 

Data analysis 

The Space Ranger outputs were processed in Python. First, the Space Ranger outputs were converted to a Visium HD object 

using the visium_hd function from the spatialdata_io package with the ‘filtered_counts_file’ set to True to use the filtered feature 

matrix. Next, the to_legacy_anndata function from spatialdata_io was used to convert the Visium HD object to an anndata object 

for processing in Scanpy with the following arguments, ‘coordinate_system’ set to ‘downscaled_hires’, ‘table_name’ set to ‘squar- 

e_008um’ to select the 8μm bins and ‘include_images’ set to True. All subsequent analysis of the Visium HD data was carried out 

in Scanpy on data with 8μm bins. First, all gene names were made unique using the var_names_make_unique function. The per- 

centage of mitochondrial genes in each bin were then calculated using the calculate_qc_metrics function before bin filtering was 

carried out. Bins were filtered to include a minimum of 100 total counts and less than 20% mitochondrial content as well as genes 

that were expressed in at least 10 bins. Next, the data were normalized using the normalize_total and log1p functions. Highly var- 

iable genes were detected using the highly_variable_genes function before downstream clustering was carried out using the pca, 

neighbors, umap and leiden functions with default parameters. Enrichment of gene signatures was calculated using the score_ 

genes function with default parameters. The number of dasatinib targets was determined for each cell by counting how many tar- 

gets had an expression value more than 0. 

Inferred copy number variation analysis 

Infercnvpy. To infer copy number variation (CNV), all Seurat objects generated in ‘Single cell RNA-sequencing analysis’ (including 

GSE168704) were merged using the merge function and the R library DropletUtils was used to generate the merged single cell data- 

set in the traditional Cell Ranger format. The write10xCounts function of DropletUtils was used to generate this format using raw 

counts of the Seurat object. The remainder of the analysis was carried out in Python. The output of write10xCounts was read in 

as a single cell object in Scanpy using the read_10x_mtx function. Next, raw counts were log normalized using the normalize_total 

and log1p functions from Scanpy. Then, the infercnvpy package was used to infer CNV in our single-cell dataset. Following normal- 

ization, genomic positions were added to the Scanpy dataset using the genomic_position_from_gtf function with the gencode vM23 

primary assembly. Next, the infercnv function was run with normal choroid plexus cells (3V, 4V and LV single-cells from GSE168704) 

as the reference category and default parameters. Clustering was run with infercnvpy with the pca, neighbors and leiden functions 

using default parameters. Plots were generated using the chromosome_heatmap function. 

CONICSmat. To infer CNV in Visium HD data, the CONICSmat 52 package in R was used. For each slide, the raw counts from the 

‘filtered_feature_bc_matrix.h5’ Space Ranger output were read using the Read10X_h5 function in Seurat. Like the downstream anal- 

ysis of the Visium HD data using Scanpy, only bins containing a minimum of 100 total counts and less than 20% mitochondrial content 

were used. The normMat function was called first on raw counts for each slide. Then, gene positions were calculated using the get- 

GenePositions with ‘ensembl_version’ set to ‘sep2019.archive.ensembl.org’ and ‘species’ set to ‘mouse’. Next the filterMatrix func- 

tion was used with the argument ‘minCells’ set to 200. calcNormFactors was then run with default parameters before the plotAll func- 

tion was used with default parameters and ‘regions’ set to a.txt file of chromosome positions for mm10. To cluster cells into malignant 

and non-malignant categories, a Seurat object of the CNV scores was generated. Normalization was not carried out, and ScaleData 

and RunPCA functions were run using default parameters. FindNeighbors was then run with ‘dims’ set to 1:5. Finally, FindClusters 

was run with the argument ‘resolution’ set to 0.1. Based on this clustering, bins were assigned as either malignant or non-malignant. 

Frequency distribution plots were then generated based on this categorization plus the enrichment of graph communities calculated 

in Scanpy as described in ‘visium HD, data analysis’.

In vivo therapeutics 

All animal work was carried out under the Animals (Scientific Procedures) Act 1986 in accordance with the UK Home office license 

(Project License PP9742216) and approved by the Cancer Research UK Cambridge Institute Animal Welfare and Ethical Review 

Board. Mice were housed in individually ventilated cages with wood chip bedding plus cardboard fun tunnels and chew blocks under 

a 12-h light/dark cycle at 21 ± 2 ◦ C and 55% ± 10% humidity. Standard diet was provided with ad libitum water. All mice were housed 

for habituation for at least 1 week before the start of the experiment. The Crl:CD1-Foxn1nu, 086 mouse strain was used. Mice for all 

experiments were between 7 and 9 weeks old at the start of the experiment. Mice were orthotopically implanted with 5000 CPC cells

ll
OPEN ACCESSArticle

Cancer Cell 43, 1–14.e1–e9, September 8, 2025 e5

Please cite this article in press as: Jassim et al., Gene context drift identifies drug targets to mitigate cancer treatment resistance, Cancer Cell (2025), 
https://doi.org/10.1016/j.ccell.2025.06.005



in 5μL of matrigel (Corning, 354230) per mouse. CPC cells below passage 14 were used for tumor implants. Tumor growth was moni- 

tored by bioluminescent imaging (BLI). 3 days post implant, the tumors reached a suitable signal of 5*10 5 p/s/cm2/sr (BLI) and ani- 

mals were then randomized into control and experimental groups. Mice were continually monitored for clinical signs and tumor pro- 

gression was measured by BLI. For BLI monitoring, mice were intraperitoneally (IP) injected with 15mg/ml of D-Luciferin (PerkinElmer, 

122799) and placed into a housing chamber containing isoflurane. Once anesthetized, mice were placed into the IVIS spectrum and 

positioned into a nose-cone with continued delivery of isoflurane. BLI was then measured. 

Drug preparation 

AZD1390 (AstraZeneca) was diluted into a vehicle of water +0.1% Tween 80 (Sigma-Aldrich, P1754) at 2mg/ml stock concentration. 

The drug was dissolved with a magnetic stirrer at room temperature and left to continually stir until administration. Dasatinib 

(MedChemExpress, HY-10181) was prepared in 80mM of citric acid monohydrate at 2.5mg/ml and manually mixed, then stored 

at 4 ◦ C. AZD9574 (AstraZeneca) was prepared in deionized water in methanesulfonic acid (Sigma-Aldrich, 471356) at a pH of 3.0– 

3.2. 0.3mg/ml of AZD9574 was diluted in the vehicle and manually mixed and stored at 4 ◦ C. All drugs were allowed to come to 

room temperature before administration. 

Radiation 

Mice receiving radiation were anesthetized by isoflurane in a housing chamber before being put into the Small Animal Radiotherapy 

Research Platform (SARRP). Mice were positioned into nose-cones in the SARRP with continued isoflurane delivery. 20Gy of tar- 

geted radiation to the implant site was given to animals with 2Gy/day in cycles of 5 days on and 2 days off. 

Drug treatment 

For mice undergoing drug treatments, drugs were delivered by oral-gavage (Instech Laboratories plastic feeding tubes, 20ga x 

38mm, Linton Instrumentation, FTP-20-38) daily according to treatment schedules outlined in this paper. AZD1390 was administered 

at a concentration of 20mg/kg, Dasatinib was administered at a concentration of 25mg/kg and AZD9574 was administered at a con- 

centration of 3mg/kg. 

Tissue collection and processing 

Once mice reached a humane clinical endpoint, mice were sacrificed by a rising concentration of CO 2 . Brains were harvested by 

immediate decapitation, posterior to the occipital bone followed by removal of the brain. Brains were fixed in 10% neutral buffered 

formalin for 24 h, followed by 70% EtOH for a further 72 h before being paraffin-embedded. For immunohistochemical studies, 7μm 

thick sagittal sections were used.

Resistance through context drift (recodr) 

Graph networks and community detection 

For each condition (including GSE168704 and GSE264154), log-normalized counts were taken from the Seurat objects from the ‘sin- 

gle cell RNA-sequencing section’ and converted to dataframes. Next, the dataframes were filtered to include only genes that were 

expressed in at least 5% of cells. A pairwise Pearson correlation analysis was carried out between every pair of genes using the Pan- 

das corr function in Python to identify the extent of linear correlation between gene pairs. The correlation matrix was then stacked 

using the Pandas stack function to generate a source, target and correlation value edgelist. Gene pairs with a Pearson correlation 

coefficient of 0.1 or above were taken forward for subsequent analysis. Pearson correlations between the same gene were removed 

to prevent self-connections in the graph network. The NetworkX function from_pandas_edgelist was used to generate an undirected 

and unweighted graph network for each condition following the steps described above where nodes represent genes, and edges 

connect nodes if those genes have a Pearson correlation of 0.1 or above. Community detection was carried out by the best_partition 

function from the python-louvain library using default parameters to identify modules in our graph networks. For plotting, NetworkX 

graphs were saved to the Gephi format with the write_gexf function and then plotted using the freely available software Gephi. 

g:Profiler analysis of communities in graph networks 

g:Profiler analysis of communities was carried out using the g:Profiler Python package incorporated into a newly built function that 

uses each list of genes in each community of a graph and runs the default g:Profiler pipeline, with or without a custom GMT file. Graph 

networks were generated for Pearson correlations of 0.8 to 0.1 in increments of 0.1. Iterative community detection and gene set en- 

richment analyses across each graph network was performed to select the final Pearson threshold. While increasing the correlation 

stringency from 0.1 to 0.8 reduced substantially the number of genes in each community, it did not change the pattern of functional 

gene enrichment in each community. We thereby employed the lower Pearson correlation threshold of 0.1. 

Node2Vec and Word2Vec 

To leverage the use of vector-based representations of nodes on each graph we employed Node2Vec followed by the skip-gram 

objective of the Word2Vec architecture to learn the graph structure for each condition. 

To represent the graph networks in a format that adequately represents node features, we used Node2Vec. 27 Node2Vec carries 

out biased random walks (second order random walks) that sample neighborhoods around nodes. Briefly, normalized transition 

probabilities were calculated for every node such that the likelihood of transitioning from one node to another is determined. The 

walks are influenced by two hyperparameters which determine the likelihood of returning to the node the walk originated from or 

going outward from the current node. These hyperparameters are the return parameter p which we set to 1 and the ‘in-out’ parameter 

q which we also set to 1. 200 walks were carried out from every single node on each graph for a walk length of 80 nodes. This random 

walk represents the graph context and generates the input format for Word2Vec.
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Word2Vec 28 is a neural network which aims to understand the context in which words are found in text, generating rich semantic 

representations of words. This is achieved through static vector representations of each word in a corpus of text where vectors are 

optimized such that words that are found in the same context have similar vectors and words that are not found in the same context 

have dissimilar vectors. The resulting word vectors describe the relationship of that node and all others around that node. The sim- 

ilarity between vectors can be measured by metrics such as the cosine distance. The Node2Vec library used internally calls on 

Word2Vec from the Gensim natural language processing library. We ran the skip-gram objective with negative sampling of the 

Word2Vec architecture with a vector ‘dimension’ of 64, ‘window’ size of 10, ‘min_counts’ of 5, initial learning rate (‘alpha’) of 

0.025 and 5 negative words (‘negative’). All models were trained for 10 epochs. 

Alignment of Word2Vec models 

Training of each Word2Vec model is inherently stochastic due to the random weight initialization step when models are created. For 

this reason, the vectors for the same node on a graph cannot be compared to the same node on another graph immediately after 

training as the vector spaces will be different. To measure how each gene changes context as a function of treatment condition, 

we carried out the Procrustes alignment between the embedding matrices of our Word2Vec models in a pairwise manner. The align- 

ment is an orthogonal transformation of an embedding matrix such that a word embedding matrix for one model is aligned to a target 

matrix from another model. This is carried out using only common words between both models. The aim is to find the orthogonal 

matrix that best maps to the target embedding matrix to which the model is being aligned allowing for comparisons of the same 

word across models. This is achieved by minimizing the sum of square distances between vectors and is solved by the singular-value 

decomposition (SVD). 53 

Comparing vectors across models 

Following Word2Vec model alignment, the cosine similarity was used as a measure of context drift for words between two models. To 

generate the cosine distance between two vectors, the cosine function in SciPy was used to compare the same gene in two different 

Word2Vec models. Cosine similarity was taken as one minus the cosine distance yielding a range of values between − 1 and 1. For 

genes that are absent in either the baseline model or comparator model, we assigned a value of − 1.1. Any genes present in the 

aligned model but not present in the baseline model were given a value of 1.2. Any value outside the range of − 1 to 1 are indicator 

values and do not represent a metric as no vector arithmetic is carried out. 

We performed iterative analyses to optimise the vector size (64) and ‘q’ (1) parameter. Increasing the dimensionality to 100 or bias- 

ing the walk toward more outward exploration with a ‘q’ parameter of 0.7 did not improve performance as determined by the cosine 

similarities of aligned vectors between conditions. A context window of 10 adequately understood the wider context around each 

node in each condition. 

Gene context drift score 

To identify potential drug targets in the relapse setting we generated a gene context drift scoring system based on the context drift of 

genes from graph-embedding analysis plus characteristics of each gene on the graph network. For each gene on a graph in the re- 

lapse condition, a cumulative score was generated using four scoring criteria. The first criteria was a neighbor score. For each gene, 

its edges were compared to the original CPC graph. The number of edges that were unique to the relapse setting were counted and 

normalized to the total number of nodes in the relapse graph. The second criteria was a graph reach score. As a proxy for how much 

of the graph a node could reach, we took the neighbors of a node plus the unique edges of the 2nd hop neighbors. The number of 

unique genes was normalized to the total number of genes in the relapse graph. The third criteria was neighborhood context drift. The 

cosines with the relapse graph as the baseline were taken and compared to the untreated CPC Word2Vec model. Next, the cosine 

dataframe was subset to include only the neighbors of the node being analyzed. Genes that were not present in the untreated CPC 

graph were removed from the dataframe and the mean of the remaining cosines was taken as a measure of overall context drift. one 

minus the mean context drift was taken to reward higher context drift of genes in the relapse setting relative to the untreated CPC 

graph. The fourth criteria was the gene context drift. For every gene, the cosine similarity between the vectors for that gene in the 

relapse graph and the untreated CPC graph were taken. One minus the cosine similarity was then taken to generate a score. Any 

gene that was present in the relapse graph but not the untreated CPC graph was given a score of 1. The sum of all scores was taken 

to generate a final score for each gene. Since each of these metrics can vary independently, gene context drift score presents a 

powerful, holistic approach to summarise changes in context between tissue states. The ‘neighborhood context drift score’ is essen- 

tial as it measures the average context drift of all the neighbors of an ‘index gene’. This is akin to how much transcriptional remodeling 

is happening around each gene with respect to gene context. Similarly, the ‘index gene score’ measures how much the gene in ques- 

tion has changed its context relative to itself between GNs. These two scores are important to combine as they give an indication of 

how much context drift has taken place around a gene and are central to our hypothesis. Graph connectivity contributes by further 

characterising the degree to which targets are associated with gene communities. 

Circos plot 

For chromosomal translocations, ‘recipient chromosome’ and ‘donor chromosome’ tables were created with the proportion of trans- 

locations observed. The chordDiagramFromDataFrame function from the Circlize package in R was then used to generate the cir- 

cos plot. 

Alluvial plots 

Alluvial plots were generated using the open source software RAWGraphs 2.0. 54
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Value scaling 

Plots indicating scaled-scores were scaled using the sci-kit learn library in Python with the minmax_scale function. Scaling was car- 

ried out across the ‘sample’ axis in order to ensure the feature range of values was scaled across the sample of interest. 

Benchmarking 

To benchmark our approach, we tested RECODR against WGCNA, 34 Diffcoexp (https://github.com/hidelab/diffcoexp) and scDrug 

which utilizes the CaDRReS-Sc model. 35 We ran WGCNA and diffcoexp in R and scDrug using a Python implementation within the 

package Omicverse. 55 WGCNA was chosen as a benchmark because it is a widely used and relatively well-established approach to 

study gene co-expression graph networks. WGCNA also identifies modules of correlated genes in a manner similar to the ‘commun- 

ities’ identified by RECODR. Benchmarking against diffcoexp allowed assessment of whether gene context drift was superior to dif- 

ferential co-expression as a prediction of drug targets. Finally, scDrug was chosen as a benchmark to ensure to test if direct analysis 

of a pre (or post) transcriptome alone rather than comparing gene context drift between pre- and pos-treatment samples was equally 

effective and predicting drug targets. 

WGCNA 

Counts for genes expressed in at least 5% of cells for each CPC condition (untreated CPC, AZD1390-monotherapy, IR-monotherapy 

and RegE) were read into R using the read.csv function. Parameters were set as detailed below in accordance with the recommen- 

dations of the publishers of WGCNA and following extensive reviews of online forums published by research groups using the com- 

putational pipelines. The pickSoftThreshold function of WGCNA was used with the ‘networkType’ parameter set to ‘signed’. The 

blockwiseModules function in WGCNA was used for network construction with ‘deepSplit’ set to 2, ‘pamRespectDendro’ set to 

False, ‘minModuleSize’ set to 30, ‘maxBlockSize’ set to 4000, ‘reassignThreshold’ set to 0, ‘mergeCutHeight’ set to 0.25 and corType 

set to ‘pearson’. The power selected was determined by the pickSoftThreshold for each dataset and was assigned as an R 2 value of 

above 0.8. Hub genes were assigned using the chooseTopHubInEachModule in WGCNA and intramodular connectivity (kTotal and 

kWithin) were generated using the adjacency function in WGCNA to generate an adjacency matrix which was then passed into the 

intramodularConnectivitiy function of WGCNA. 

Diffcoexp 

To run diffcoexp, CPC counts from individual conditions were read into R using the read.csv function. For all analyses, we carried out 

drug resistant CPCs versus untreated CPC. Dataframes were subset to include only genes that were present in both conditions 

(a requirement of the diffcoexp tool). These dataframes were then passed to the diffcoexp function with ‘r.method’ set to ‘pearson’, 

‘rth’ set to 0.1, ‘qth’ set to 0.1, ‘q.method’ set to ‘BH’ and ‘r.diffth’ set to 0.1. Dataframes were saved using the write.csv function for 

downstream analysis. Scatterplots with corresponding histograms of data distribution were then generated in Python. Briefly, differ- 

ential edge co-expression csv files were read into Python using the Pandas read_csv function. Then, the dataframes were subset to 

include genes that were co-expressed with a pearson correlation threshold of 0.1 or above for gene one and gene two. Next, the 

mean of the difference in co-expression between gene pairs was taken for every gene using the groupby function in Pandas. The 

context drift scores of drug-resistant CPCs versus untreated CPC was read using the Pandas function read_csv. Scores were subset 

to include only genes that were present in the differential edge co-expression analysis before dataframes for the mean co-expression 

difference and context drift scores for the corresponding genes were merged using the Pandas join function. 

Omicverse (for scDrug) 

The Omicverse package was used to run scDrug in Python. First, H5AD objects of CPC single cell objects were read into Python using 

the Scanpy function read_h5ad. Each scanpy object was subset to include only genes that were expressed in at least 5% of cells as 

per the input to RECODR. As cell clusters with cell types were annotated, we ran scDrug using the clusters previously calculated. 

Because CaDRReS was trained on human cancer cell lines, all genes were made uppercase. Then, the adata object was passed 

to the Drug_Response class in Omicverse to generate drug predictions. The ‘GDSC’ model was used, with the number of drugs 

(‘n_drugs’) set to 200.

Human tumor analysis 

All human tumor samples were collected and analyzed in accordance with Institutional Review Board (or equivalent) approvals and 

clinical trial consent. Medulloblastoma samples were collected children undergoing standard of care treatment following informed 

consent. The PARTNER trial protocol (NCT03150576 and EudraCT: 2015-002811-13) was approved by Northwest—Haydock Re- 

search Ethics Committee (ref. 15/NW/0926) and the trial was performed in accordance with the Declaration of Helsinki and the Euro- 

pean Clinical Trials Directives 2001/20/EC (see Abraham et al. 45,46 ). 

Triple negative breast cancer 

We analyzed snRNAseq data from 47 patients with triple negative breast cancer (TNBC) enrolled onto different arms of a clinical trial 

with or without treatment of the PARP1 inhibitor olaparib. The dataset was split by individual patients pre- and post-treatment. As with 

CPC, RECODR was run on log-normalized counts subset to include genes expressed in at least 5% of cells and graph-networks were 

made with a Pearson correlation above 0.1. Node2Vec and Word2Vec were run with the same parameters as with CPC before mod- 

els were aligned. Node scores were carried out for individual patients by comparing the post-treated graph to their corresponding 

pre-treated graph. 

Medulloblastoma 

We analyzed medulloblastoma pre- and post-treatment scRNAseq data from 9 patients. For all datasets, RECODR was run in the 

same way as with the CPC and TNBC data. Node scores were generated for recurrence samples compared to primary samples.
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Identification of most variably expressed genes 

Genes with the greatest variability in expression level were detected across medulloblastoma and TNBC samples using Scanpy in 

Python. First, the adata object was subset to data from patients pre- and post-treatment. Then, the highy_variable_genes function in 

Scanpy was used on each subset object with ‘n_top_genes’ set to 4500. The get.obs_df function from Scanpy was used to extract 

expression values for the 4500 most variable genes by patient. The mean expression of each gene was then calculated using the 

mean function of the expression dataframe. Finally, the mean absolute deviation was calculated using the mad function from the Pan- 

das library.
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Figure S1. The RECODR pipeline, related to Figure 1: (1) The pipeline starts with scRNAseq data 
taken from two conditions e.g., pre- and post-treatment. scRNAseq data are pre-processed and 
counts normalized. (2) Co-expression graph networks are constructed for each condition, 
co-clustering into communities tightly correlated, and therefore potentially functionally related, genes. 
(3) The Node2Vec  algorithm  enacted  within  RECODR  takes  random walks from every gene to
generate a representation of the context around every gene in each condition. (4) These graph walks 
(context representation) are then trained by Word2Vec to generate embedding vector 
representations of every gene, learning the wider context of each gene in each condition. (5) The 
vectors for the same gene in each condition are then compared to generate an approximation of 
the extent to which their surrounding context has changed (context drift) before a final context drift 
score is generated to rank genes according to their degree of context change between conditions. 
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Figure S2. Isolation and characterization of mouse CPC cells, related to Figure 1: A. 
Schematic depicting CPC implants and fluorescence activated cell sorting (FACS) for single-cell 
RNA sequencing (scRNAseq). B. Flow cytometry plots indicating gating of YFP+ (left) and RFP+ 
(right) CPC cells from tumour bearing (left) and non-tumour bearing (right) controls. C. Copy 
number variations (CNVs) inferred in scRNAseq profiles of each CPC cell. CNV scores at bottom 
are from reference 23. D. Spectral karyotype analysis of 10 individual CPC cells. E. Representative 
SKY images of intracellular translocations in CPC cells. F. CIRCOS plot summarizing intracellular 
chromosomal translocations detected by SKY in 30 CPC cells. G. Concurrent GFP 
immunofluorescence and chromosome 15 FISH of the normal cerebellum (left) and CPC (right). 
Scale bar=20µm.
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Figure S3. RECODR analysis of human and mouse CPC, related to Figure 1: A. GN of four 
independent human CPCs and communities and associated enriched gene sets. B. Violin plots of 
the context drift scores of genes in the indicated communities on the GNCPC (p values: 
***=p<0.0005; ****=p<0.0005; Mann Whitney test). C. Violin plots of the context drift scores of 
retained, switched and new genes in the indicated communities on the GNCPC (p values: 
****=p<0.0005; Mann Whitney). 
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Figure S4. AZD1390 and radiation monotherapy regimens, related to Figure 2: 
Characterisation of control treated mouse tumour growth measured by bioluminescence, (A) and 
mouse survival (B) in 53 mice with CPC. C. Treatment protocols of AZD1390 (top) or radiation 
(bottom) monotherapy for mice with CPC (n=number of mice enrolled in each arm). Waterfall plots 
of AZD1390 (D) and radiation (E) treatments reporting tumour growth suppression of individual 
tumours over time during the indicated treatment. Bars report the total area under the curve of 
tumour growth over time measured by weekly tumour bioluminescence relative to control treated 
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Figure S5. Context drift scores in CPC cell populations during AZD1390 and radiation 
monotherapy and combination treatment resistance, related to Figure 3: A. Violin plots of the 
context drift scores of genes in the indicated communities on the GNAZD1390 and GNIR (p values: 
****=p<0.0005; Mann Whitney; community key shown to right of panel B). B. Violin plots of the 
context drift scores of recalled, new, switched and retained genes in the indicated communities on 
the GNAZD1390 and GNIR (p values: ****=p<0.0005; Mann Whitney). C. Co-Immunofluorescence 
of γH2AX and GFP in exemplar AZD1390 resistant CPC (Scale bar=40µm). D. Frequency plot of  
γH2AX immunofluorescence intensity/GFP+ CPC cells across different conditions and control 
(untreated CPC). E. Co-Immunofluorescence of DHFR and GFP in exemplar radiation resistant 
CPC (Scale bar=40µm). F. Frequency plot of DHFR immunofluorescence intensity in GFP+ CPC 
cells across different conditions and control (untreated CPC). G. Violin plots of the context drift 
scores of genes in the indicated communities on the GNReg-E (p values: ****=p<0.0005; Mann 
Whitney; community key shown to right of panel H). H. Violin plots of the context drift scores of 
indicated gene types (see main text) in the indicated communities on the GNReg-E (p values: 
****=p<0.0005; Mann Whitney). I. Co-immunofluorescence of GFP, TREM2, and vCD49D in CPCs 
treated as shown. Scale bar=50μm. J. Co-immunofluorescence of GFP, TREM2 and CD68 in 
Regimen-E relapsed CPC showing GFP+ CPC cells and GFP-/CD68+ TAM. Scale bar=20µm. K. 
Mean proportion (+standard deviation) of tumour associated macrophages (TAMs; 
CD45+/CD68+/P2Y12+/CD49+), microglia (CD45+/CD68+/P2Y12+/CD49-) and GFP+ tumour 
cells across all conditions. ***, p<0.0005 Mann Whitney.
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Figure S6. Visium HD spatial transcriptomic analysis of control treated and Regimen-E 
relapsed CPC, related to Figure 5: A. Inferred copy number abnormalities inferred as normal 
diploid and tumour cells with abnormal chromosome copy number variance (CNV) in untreated 
CPC (top) and Regimen-E relapsed CPC (bottom; scale bar=1mm). Hashed line outlines tumour in 
each. B. Frequency plots of relative enrichment of expression of the indicated community in 
inferred normal and tumour cells in untreated and Regimen-E relapsed CPC detected by Visium 
HD. C. Venn diagrams of Visium HD bins enriched for the indicated communities in control and 
Regimen-E resistant CPC. D. Graphs left report the ranked relative enrichment of expression of 
progenitor (top), immune (middle) and mesenchymal (bottom) community genes in all 8µmx8µm 
bins detected by Visium HD in sections of control CPC. Middle graphs report the same in sections 
of Regimen-E relapsed CPC. Right graphs report the non-linear regression curves of the 
corresponding left and middle graphs.
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Figure S7. Comparison of gene expression levels and context level drift scores among 
patients with medulloblastoma or triple negative breast cancer, related to Figure 7: A. 
Unsupervised hierarchical clustering by Euclidean distance of the 4,500 genes with the most 
variable expression across medulloblastoma sc/snRNAseq profiles analysed in Figure 6 converted 
to bulk sequence (see STAR Methods). Expression level variance was determined by mean 
absolute deviation (MAD) score. B. Venn diagrams report the overlap in the top 4,500 genes with 
the highest context drift scores or MAD gene expression scores across medulloblastomas. C. 
Unsupervised hierarchical clustering by Euclidean distance of the 4,500 genes with the most 
variable expression across triple negative breast cancer snRNAseq profiles analysed in Figure 6 
converted to bulk sequence (see STAR Methods). Expression level variance was determined by 
MAD score. D. Venn diagrams report the overlap in the top 4,500 genes with the highest context 
drift scores or MAD gene expression scores across triple negative breast cancers
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